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Abstract    

Lagged dependent variables have routinely been used in district-level geopredictive malaria-related regression 

analysis to provide robust estimates of the effects of independent variables. However some research argues that 

employing such variables in these regressions produces negatively biased coefficient estimates. These concerns may 

be easily resolved by specifying a regression model that accounts for autocorrelation in the error term  in a 

geopredictive district-level malaria-related risk model In this research we constructed multiple linear and non-linear 

geopredictive autoregressive district-level malaria-related  hyperendemic transmission oriented risk models in 

PROC ARIMA using multiple malarial-related field ,clinical(e.g. prevalence rates)  and remote sampled (e.g. 

Normalized Vegetation Difference index (NDVI)] estimators from 2006 to 2010, in Uganda. We did so to quantitate 

latent autocorrelation and other non-normal residuals in the regression forecasts targeting important district-level 

covariates. Initially, a Poisson and a negative binomial (i.e., a Poisson random variable with a gamma distrusted 

mean) regression was constructed in PROC REG  employing the sampled estimators which revealed that the 

covariate coefficients  and their marginal probabilities derived from the district-level risk model were significant 

but, the forecasts had no predictive power. Inclusion of indicator variables denoting the time sequence and the 

district geolocational spatial structure was then performed with Thiessen polygons in ArcGIS. The data was then 
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exported into an SAS/GIS eigenfunction decomposition spatial filter algorithm. The outputs however failed to reveal 

any unbiased estimators. Thereafter, an Autoregressive Integrated Moving Average (ARIMA) Time Series model 

was constructed in PROC ARIMA which rendered a conspicuous first-order temporal residual spatial structure. A 

random effects term was then specified using the sampled coefficients. This random effects term displayed no latent 

uncertainty autocovariate effects. The model‘s forecasted residual error variance however, implied a substantial 

variability in the district-level regressed seasonal prevalence rates. Thereafter, a series of digital elevation models 

(DEM) was constructed in ArcGIS which spatially adjusted the non-linear derivatives from the ARIMA model. A 

final risk model was then calculated as: = exp [a + re+ LN (population)], Y ~Poisson  +DEM (zonal statistic). 

The mixed-model estimation results included: a = -3.1876 re ~ n (0, s
2
) mean re = -0.0010 s

2
 = 0.2513 where P(S-W) 

= 0.0005 and the Pseudo-R
2
 = 0.3103.  Copyright © acascipub.com, all rights reserved.  

 

Keywords:   SAS/GIS, Autoregressive Integrated Moving Average (ARIMA), ArcGIS, Poisson, QuickBird, 

residual autocorrelation 

 

Introduction 

Routinely, time-series models have been constructed in IBM
®
 SPSS

®
 using seasonal district-level geopredictive 

malarial prevalence data as a dependent variable to geographically forecast seasonal case distribution data. SPSS is a 

computer program employed for survey authoring and deployment (i.e., SPSS Data Collection), data mining (e.g., 

SPSS Modeler), text analytics, and deployment for batch and automated scoring services (www-

01.ibm.com/software/analytics/spss/). One of the primary formats for a malarialogist/experimenter to analyze 

seasonal hyperendemic transmission oriented field-sampled data files in SPSS is by using Data View, so that each 

row of a data sample sheet (e.g.EXCEL file) can be viewed as a source of field/clinical/remote sampled data 

attributes and each column as a predictor variable (e.g., characteristic or property of each data source). Typically, the 

malarialogist/experimenter enters the district-sampled data and edits it in SPSS after establishing the names and 

other properties of the sampled explanatory hyperendemic transmission oriented covariate coefficients in the 

empirical dataset using Variable View. He or she thereafter, routinely clicks on the Variable View tab to define the 

names and other properties of each sampled variable in the dataset. In this fashion, each district-level time series 

malarial-related hyperendemic transmission oriented geopredictive variables would be represented as a row, and 

various properties of the variable would be represented as columns allowing the malarialogist/experimenter   to 

change the properties of the existing field/clinical/remote-sampled data attributes or, to establish properties for new 

sampled variables.  

The two basic types of district-level time series SPSS malaria-related geopredictive hyperendemic transmission 

oriented seasonal variables are numeric and string. Numeric variables may only have numbers assigned (e.g., 

district-level prevalence rates). String variables may contain letters or numbers but, even if a string variable happens 

to contain only numbers, numeric operations conducted on an empirical dataset of district-level time series 

field/clinical/remote-sampled hyperendemic transmission oriented variables will not be permitted in SPSS (e.g., 

finding the mean, variance, standard deviation, etc...). If a sampled district-level geopredictive time series 

hyperendemic transmission oriented numeric variable is selected, the malarialogist/experimenter  can then just then 

click in the width box or, the decimal box in the database to change the default values characters reserved for 

displaying sampled numbers with multiple decimal places. For whole numbers, the decimals can even be dropped 

down to 0. 

Alternatively,  if a malarialogist/experimenter  chooses  a string district-level malaria-related  time series 

geopredictive hyperendemic transmission oriented variable, SPSS can quantitate how much "room" to leave in the 

memory for of each sampled explanatory field/clinical/remote sampled covariate coefficient measurement value for 

indicating the number of characters to be allowed for data entry in the string variable. The width of the district-level 

geopredictive variable would thereafter be the number of characters SPSS will allow to be entered for the sampled 

variable. If it is a numerical district-level field/clinical/remote sampled hyperendemic transmission oriented value 

and has decimals (e.g., depth of a particular sampled malaria-related mosquito habitat), the total width grid cell will 
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include a spot for each decimal, as well as one for the decimal point. The malarialogist/experimenter may then 

change a width of a data numerical entry by clicking in the width cell for the desired explanatory covariate 

coefficient value or type in a new number or, use the arrow keys at the edge of the cell. If more decimals have been 

entered or computed by SPSS, the additional district-level malaria-related seasonal geopredictive information will 

be retained internally but, not displayed on screen. For whole field/clinical/remote sampled hyperendemic 

transmission oriented numbers, the malarialogist/experimenter may choose to even reduce the number of decimals to 

zero for regressing the ecological empirical datasets parsimoniously. 

 In SPSS the label of a seasonal geopredictive field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented variable then would be a string of text to identify what a district-level variable actually 

statistically represents. Unlike the name, the label is limited to 255 characters and may contain spaces and 

punctuation. (http://my.ilstu.edu/~mshesso/SPSS/data).For instance, if there is a district-level sampled  georefernced 

hyperendemic transmission oriented geopredictive variable for each question on a field-sample sheet, a 

malarialogist/experimenter could type the question ( e.g., What is the district-level  weekly rainfall  rate?) as the 

field/clinical/remote  variable label in SPSS. Although the variable label will explain what the sampled district level 

malarial-related geopredictive time series explanatory  field/clinical/remote sampled hyperendemic transmission 

oriented variable linearly represents, for categorical data (e.g., discrete data of both nominal and ordinal levels of 

measurement), commonly the information required for constructing a robust malarial-related risk model would be 

based on which explanatory hyperendemic transmission oriented covariate coefficient values represent which field-

sampled categories. To indicate how these numbers are assigned in SPSS, a malarialogist/experimenter would then 

add labels to specific seasonal-sampled hyperendemic transmission oriented covariate coefficient measurement 

values by clicking on the box in the values cell. The real value of the district-level field/clinical/remote sampled 

hyperendemic transmission oriented labels could then be seen in the Data View by clicking on the "toe tag" icon in 

the tool bar which would then subsequently switch between the numeric values and their labels in the classified 

dataset.  

Importantly, even though there will be  some numerical codes recorded in SPSS for each empirical-sampled district-

level time series field/clinical/remote sampled malaria-related  hyperendemic transmission oriented data attribute, 

SPSS can be signaled to treat the sampled data as missing. For example, SPSS could simply display a single 

sampling period (e.g., SYSTEM MISSING data). After clicking on the ... button in the missing cell and then  

declaring "9", "99", and "999", SPSS would then treat the district-level sampled field/clinical/remote malaria-related 

hyperendemic transmission oriented geopredictive variables as missing (i.e., these values will be ignored). The 

columns property would then tell SPSS how wide the column should be for each sampled district-level variable. The 

column size would then indicate how much space is allocated rather than the degree to which it is filled.  Routinely, 

the alignment property would indicate whether the district-level field/clinical/remote sampled malaria-related 

information in the Data View should be left-justified, right-justified, or centered. Thereafter, the Measure property 

would indicate the level of the sampled explanatory hyperendemic transmission oriented covariate coefficient 

measurement values. Since SPSS does not differentiate between interval and ratio levels for variable measurements, 

both of these district-level malaria-related seasonally quantitative field/clinical/remote sampled hyperendemic 

transmission oriented variable types would then be lumped together as "scale". Nominal and ordinal levels of the 

measurements however, would be differentiated in the empirical dataset. 

Additionally, in SPSS,
 

independent time series district-level geopredictive malaria-related explanatory 

field/clinical/remote sampled hyperendemic transmission oriented explanatory covariate coefficient dataset specified 

on the Variables tab can be explicitly also included in any seasonal estimated model. This is in contrast to the Expert 

Modeler where the independent variables would only be included, if they have a statistically significant relationship 

with the dependent variable (e.g., district-level malarial prevalence rates). Fortunately, SPSS will allow entry of 

multiple district-level sampled malarial-related time series hyperendemic transmission oriented variables into a 

regression in blocks, prior to the stepwise regression.  If the malarialogist/experimenter does not block the 

filed/clinical/remote independent variables or, uses stepwise regression, a column will be created listing all of the 

independent variables specified. This column would then specify the method that SPSS will use to run the 

regression.   
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Routinely, time series district-level field/clinical/remote sampled hyperendemic transmission oriented exploratory 

observational geopredictors are added to a malaria-related risk model in a stepwise fashion. The geopredictor is then 

tested to determine levels of variance in the dependent variable (e.g., district-level stratified prevalence rates) that 

occur   simply due to chance.  A malarialogist/experimenter would then continue to add more hyperendemic 

transmission oriented geopredictors to the model which in most circumstances would improve the ability of the 

explanatory coefficients to explain the dependent variable, although some of this may cause an increase in R
2
 simply 

due to chance variation in that particular sample.  The adjusted R
2
 in SPSS may then yield a more honest value to 

estimate the R
2
 for the empirical sampled district-level field/clinical/remote sampled estimator dataset.   Adjusted R

2
 

can then be computed using the formula 1 - ((1 - Sq.)(N - 1 )/ (N - k - 1).  Commonly in this formula when the 

number of regressable district-level time series empirical sampled hyperendemic transmission oriented observations 

is small and the number of  exploratory predictors is large, there will be a much greater difference between R
2
 and 

adjusted R
2
 as the ratio of (N - 1) / (N - k - 1) will be much greater than 1.  By contrast, when the number of district-

level time series field/clinical/remote seasonal-sampled hyperendemic transmission oriented observations is very 

large in an empirical malaria-related  empirical ecological dataset compared to the number of district-level sampled 

exploratory predictors, the value of R
2
 and adjusted R

2
 will be much closer  as the ratio of (N - 1)/(N - k - 1) will 

approach 1. Thereafter, routinely a standard error of the estimate would be rendered in the SPSS
 
Annotated SPSS 

Output. The standard error of a robust  geopredictive district-level field/clinical/remote sampled malaria-related 

model hyperendemic transmission oriented   residual forecast estimate, [i.e., the root mean square error,(RSME)]  

would then be the standard deviation of the error term, which is the square root of the Mean Square Residual (or 

Error)(see Jacob et al. 2005b). 

Alternatively, a malarialogist and/or an experimenter could   specify a custom exponentially weighted autoregressive 

integrated moving average (ARIMA) or exponential smoothing in SPSS for constructing a hyperendemic 

transmission oriented robust geopredictive district-level malaria-related time series regression model. Fortunately, 

the ARIMA time series models form a general class of linear models which are widely used in autoregressive risk 

modeling for forecasting time series. The purpose of ARIMA methods for time series district-level malaria-related 

risk modeling then would be  to fit a stochastic randomly determined district-level geopredictive model to a given 

set of time series district-level field/clinical/remote sampled hyperendemic transmission oriented data attributes, 

such that the model can closely approximate the process that is actually generating the data. Given a time series of 

district-level malaria-related data attributes  where is an integer index and the  are the sampled explanatory 

hyperendemic transmission oriented covariate coefficient values, then an ARIMA(p' ,q) model can be  provided by: 

where is the lag operator, are the parameter estimators of the 

autoregressive part of the model and are the geopredictive estimators  of the moving average part and are the 

forecasted  error terms. These error terms are generally assumed to be independent, identically distributed (i.d.d) 

variables sampled from a normal distribution with zero mean. If then  a malarialogist/experimenter assumes now 

that the polynomial has a unitary root of multiplicity d, then it can be rewritten as: 

An ARIMA(p,d,q) process in a time series geopredictive malaria-related 

district-level risk model would  express this polynomial factorization property with p=p'−d, which subsequently 

thereafter could  be described by: . By so doing  the 

geopredictive district-level risk model may be thought as a particular case of an ARMA(p+d,q) process having the 

autoregressive polynomial with d unit roots. The model can then be generalized as follows 

 (see Box and Jenkins 1976) 

http://en.wikipedia.org/wiki/Lag_operator
http://en.wikipedia.org/wiki/Independent_and_identically-distributed_random_variables
http://en.wikipedia.org/wiki/Normal_distribution


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

5 

 

By so doing,  an ARIMA(p,d,q) process in a district-level geopredictive time series field/clinical/remote 

sampled  malaria-related  risk model with drift δ/(1−Σφi) can be robustly constructed.Thereafter, a  district-level 

geopredictive ARIMA (p,d,q) risk model of the time series   may be employed to quantitate 

empirical ecological georeferenced malaria-related  field/clinical/remote sampled hyperendemic oriented 

observational exploratory predictors by  employing = where B is the backward shift 

operator, Bxy=xy-1, is the backward difference and where   and are polynomials of order p and 

q, respectively. In SPSS, ARIMA (p,d,q) models are the product of an autoregressive part [e.g.AR(p)] 

, an integrating part and a moving average MA(q) part 

respectively (see Box and Jenkins, 1976). Before undertaking these steps, 

however, a malarialogist/experimenter must be certain that the geopredictive time series is stationary in the 

ecological empirical dataset parameter estimators. That is, in the district-sampled  datasets the covariance between 

any two seasonal sampled field/clinical/remote explanatory hyperendemic transmission oriented  covariate 

coefficient measurement values of the time series must be  dependent upon only the time interval between those 

particular  sampled values and not on their absolute geolocation in time. A district-level malaria-related 

geopredictive ARIMA model can then be viewed as a "cascade" of two models: The first would be non-stationary: 

while the second  would be wide-sense stationary: 

 where explanatory hyperendemic transmission oriented forecasts 

are routinely  made for the process . 

Some authors, including Jacob et al. (2013b), and Griffith (2005) employed a different convention for risk  assessing 

multiple geopredictive autoregressive vector arthropod-related coefficients in time series models. For instance, in 

their models district-sampled  explanatory covariate coefficient non-constant variance estimates were removed from 

empirical datasets by performing natural log transformations. Thereafter, the authors removed the trend in the 

sampled series by quantitating first difference values in the empirical dataset. If very large autocorrelations were 

then observed at lags spaced n periods apart, the authors determined that they had evidence of periodicity in the 

forecasted estimates. The objective of the identification stage then was to identify the autocorrelation uncertainty 

coefficients throughout seasonal differencing at a selected sample period and then rigorously quantitate any residual 

error variance in the forecasts employing an  eigenfunction decomposition algorithm. By so doing, the authors 

allowed all the polynomials from the models involving the lag operator to appear in a similar form throughout the 

residually forecasted estimates.  

Similarly, a time series  district-level malaria-related geopredictive malarial-related SPSS derived ARIMA risk 

model could be written as  Then the models can, after choosing p and q, be 

fitted by least squares regression to determine  the seasonal-sampled explanatory district-level field/clinical/remote 

sampled hyperendemic transmission oriented covariate coefficient  statistical significance. Thereafter, the exact 

likelihood could be computed via a state-space representation of the ARIMA process, and the innovations and their 

variance could then be found by a Kalman filter.  

The Kalman filter, also known as linear quadratic estimation (LQE), is an algorithm that employs a series of 

measurements observed over time, containing noise (e.g., district-level geopredictive malaria-related empirical 

random variations) and other inaccuracies, while simultaneously producing estimates of unknown variables that tend 

to be more precise than those based on a single measurement alone. More formally, the Kalman filter operates 

recursively on streams of noisy input data to produce a statistically optimal estimate of the underlying system 

http://en.wikipedia.org/wiki/Least_squares
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Statistical_noise
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Estimation_theory
http://en.wikipedia.org/wiki/State_space_(controls)
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state.The initialization of the differenced ARIMA process employs stationarity and is based on Gardner et al. (1980). 

For a differenced process the non-stationary components in a malaria-related geopredictive autoregressive district-

level risk model may be given by a diffuse prior controlled by Kappa. These methodologies  can be defined as the 

prior variance  computated by a multiple of the innovations  variance tabulated from an empirical ecological  dataset 

of field/clinical/remote sampled regressors used to construct differenced district-level hyperendemic transmission 

oriented  risk models.  District-level malaria- related field/clinical/remote sampled time series geopredictive 

observations which are still controlled by the diffuse prior, as determined by having a specific Kalman gain (e.g. 

1e4), can then be excluded from the likelihood calculations. For ARIMA models with differencing, the differenced 

series will follow a zero-mean ARMA model.  

 

If a 'dreg' term is included, in SPSS a linear regression (with a constant term if 'include mean' is true) will be fitted 

with a geopredictive time series ARMA model for the error term. The differenced series variance matrix for the 

ARIMA models will then follow a zero-mean ARMA model. If a 'xreg' term is  also included in SPSS, a linear 

regression (with a constant term if  'include.mean' is true) will be subsequently fitted with an ARMA model for the 

error  term. The variance matrix of the estimates may then be found from the Hessian of the log-likelihood, 

estimates. By so doing, the estimators would subsequently minimize the error term in the district-level dataset of 

regressed residually forecasted explanatory hyperendemic transmission oriented covariate coefficient estimates.  

 

As such, a seasonal ARIMA-related SPSS derived district-level geopredictive malaria-related  regression-based risk 

model then would simply be an ARIMA(p,d,q) model where the sampled parameters p, d, and q are non-negative 

integers. These integers would then be related to the order of the AR, integrated and MA parts of a robust 

geopredictive district-level malaria-related regression-based hyperendemic transmission–oriented risk model 

residually forecasted components respectively. SPSS could then combine serially correlated methods in the AR and 

MA into a composite model of the time series for deriving statistically significance of each sampled district-level 

explanatory hyperendemic transmission–oriented covariate. The risk model residually forecasted estimates in SPSS
 

could then be additionally regressed for quantitating any latent autocorrelation error coefficients and partial 

autocorrelation uncertainty error coefficient estimates in the district-level time series forecasted geopredictive 

malarial data attributes.  

Partial autocorrelations measure the degree of association between various lags when the effects of other lags are 

removed (Griffith 2003). If the autocorrelation between Yt and Yt-1  in a district-level geopredictive time series  

malaria-related risk model is significant, this would signify  a similar significant autocorrelation between Yt-1 and Yt-

2, as they would just one period apart in the autocovariate error matrix. Since both YT and Yt-2 would be both 

correlated with Yt-1 in the district-level risk model, they would also be correlated with each other. Therefore, by  

removing the effect of Yt-1, a malarialogist/exprimenter could measure the true correlation between Yt and Yt-

2.Additionally, a partial autocorrelation coefficient of order k can be determined by regressing the sampled time 

series  geopredictive explanatory district-level field/clinical/remote sampled malaria-related hyperendemic 

trasnmission oriented covariate coefficient measurement  values by its lagged values employing 

 ( see Box and Jenkins 1976). This form of a 

seasonal malaria-related regression-based equation would be an (AR) one, since its independent variables would be 

time-lagged values of the dependent variable. This multiple regression could then identify the partial autocorrelation 

(i.e,AK) in the risk model district-level field/clinical/remote malarial related residual forecasts. If the 

malarialogist/experimenter regresses YT only against Yt-1 in the district-level risk model, then a value for α1. would 

be rendered. If Yt against both Yt-1 and Yt-2 are regressed in the model, then the values for both α1 and α2 would be 

derived. These partial autocorrelation district-level malaria–related geopredictive uncertainty coefficients can be 

plotted in SPSS. This plot would be a partial autocorrelation function of the regressed district-level malaria-related 

explanatory field/clinical/remote sampled hyperendemic transmission oriented covariate coefficients. 

Additionally, a malarialogist/experimenter may find the autocorrelation and partial autocorrelation plots in SPSS 

very helpful for residually quantitating latent forecasted field/clinical/remote sampled uncertainty error estimators in 

any seasonal malarial related district-level empirical dataset. For instance, the Forecasting optional add-on module 

in SPSS can provide multiple residual analytic techniques for identifying non-normal seasonal-sampled district-level 

explanatory hyperendemic transmission-oriented uncertainty estimators. This would include creation of summary 

http://en.wikipedia.org/wiki/State_space_(controls)
http://en.wikipedia.org/wiki/Parameter


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

7 

 

plots across time series parameter estimator model outputs including histograms of stationary R-square, R
2
, root 

mean square error (RMSE), mean absolute percentage error MAPE, maximum absolute error (MaxAE), maximum 

absolute percentage error (MaxAPE), and normalized Bayesian information (BIC) criterion with box plots of 

residual autocorrelations and partial autocorrelations.  

The Bayesian information criterion (BIC) (Schwarz, 1978) or Schwarz criterion (also SBC, SBIC) is a criterion for 

model selection among a finite set of models. The criterion was derived to serve as an asymptotic approximation to a 

transformation of the Bayesian posterior probability of a candidate model. Although the original derivation measures 

that the observed data as i.d.d. arising from a probability distribution in a regular exponential family, BIC has been 

traditionally employed in a much larger scope of model selection. To better justify the widespread applicability of 

BIC, a malarialogist/experimenter may, for example, choose to derive the information-theoretic criterion in a very 

generalized district-level geopredictive framework, one that does not assume any specific form for the likelihood 

function, but only requires that it satisfies certain non-restrictive regualrity conditions. For instance , a Bayesian 

information criterion for singular district-level time series geopredictive malaria-related risk models may be 

proposed. The malarialogist/experimenter may then consider approximate Bayesian model choice for model 

selection problems that involve models whose Fisher-information matrices may fail to be invertible along other 

competing district-level malaria-related submodels. 

In mathematical statistics and information theory, the Fisher information is the variance of the score, or the expected 

value of the observed information (Edgeworth 1908).. In Bayesian statistics, the asymptotic distribution of the 

posterior mode depends on the Fisher information and not on the prior (according to the Bernstein–von Mises 

theorem, which was anticipated by Laplace for exponential families).  The role of the Fisher information in the 

asymptotic theory of MLE was emphasized by the statistician R.A. Fisher (following some initial results by F. Y. 

Edgeworth). The Fisher information is also used in the calculation of the Jeffreys prior, which is used in Bayesian 

statistics. The Jeffreys prior, , is a non-informative (objective) prior distribution on parameter space that is 

proportional to the square root of the determinant of the Fisher information: It has 

the key feature that it is invariant under reparameterization of the parameter vector . This makes it of special 

interest for use with scale parameters The Fisher-information matrix is used to calculate the covariance matrices 

associated with maximum-likelihood estimates. It can also be used in the formulation of test statistics, such as the 

Wald test (Frieden 2004). 

 Thus, Fisher information would be a way of measuring the amount of information that a sampled geopredictive 

malaria-related district-level hyperendemic transmission oriented observable random variable X carries about an 

unknown parameter θ upon which the probability of X  would depend. The probability function for X, which would 

also be the likelihood function for θ in the malaria-related risk model would then be a function f(X; θ) as it would be 

the probability mass (or probability density) of the sampled district-level random variable X conditional on the value 

of θ. The partial derivative with respect to θ of the natural logarithm of the likelihood function in the risk model 

residual forecasts then would be  based on the score. Under certain regularity conditions, it may be shown that the 

first moment of the score in a geopredictive district-level malaria-related risk model  (that is, its expected value) is 0: 

[e.g.  

].The second moment (i.e., the Fisher 

information) would then be 

where, for any 

http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Mathematical_statistics
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Score_(statistics)
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Observed_information
http://en.wikipedia.org/wiki/Bayesian_statistics
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http://en.wikipedia.org/wiki/Mode_(statistics)
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field/clinical/remote sampled hyperendemic transmission oriented value of θ, the expression E[...|θ] would denote 

the conditional expectation over the sampled district-level  values for X with respect to the probability function f(x; 

θ) given θ. Note that  ( see Cressie 1993). District-level malaria-related sampled random 

variable carrying high Fisher information would then imply that the absolute value of the score is high. The Fisher 

information is not a function of a particular observation, as the random variable X has been averaged out ( Gilks 

1996) .Since the expectation of the optimal score  would be zero for a time series malaria-related geopredictive risk 

model, the Fisher information would also t be he variance of the score. If log f(x; θ) is twice differentiable with 

respect to θ in the geopredictive risk model and under certain regularity conditions, then the Fisher information may 

also be written since  as  

and  Thus, the Fisher information would 

essentially be  the negative of the expectation of the second derivative with respect to θ of the natural logarithm of f 

in a robust geopredictive malaria-related hyperendemic transmission oriented risk model Information may be seen to 

be a measure of the "curvature" of the support curve near the maximum likelihood estimate of θ. A "blunt" support 

curve (i.e., one with a shallow maximum) would have a low negative expected second derivative, and thus low 

information; while a sharp one would have a high negative expected second derivative and thus high information. 

Information is additive, in that the information yielded by two independent experiments is the sum of the 

information from each experiment separately: ( see Frieden 2004). This 

result follows from the elementary fact that if malarial-related random variables are independent, the variance of 

their sum is the sum of their variances. Hence, the information in a random sample of size n is n times that in a 

sample of size 1 (if sampled district-sampled malaria-related observations are i.d.d.).The information provided by a 

sufficient statistic is the same as that of the sample X. This may be seen by using Neyman's factorization criterion in 

SPSS or SAS/GIS for a sufficient statistic.  

Fisher's factorization theorem or factorization criterion provides a convenient characterization of a sufficient 

statistic. For example, if the probability density function (pdf) is ƒθ(x) in a malaria-related model, then T is sufficient 

for θ if and only if nonnegative functions g and h can be found such that. the density ƒ can be factored into a product 

such that one factor, h, does not depend on θ and the other factor, which does depend on θ, depends on x only 

through T(x). Thus, if T(X) is sufficient for θ in a geopredictive malaria-related district-level risk model , 

then for some functions g and h. The equality of information then follows 

from the following fact: which follows from the definition 

of Fisher information, and the independence of h(X) from θ. More generally, if T = t(X) is a statistic in a 

geopredictive sampled hyperendemic transmission oriented malaria-related model, then  with 

equality if and only if T is a sufficient statistic. If is  a random vector in and l  is 

a probability distribution on with continuous first and second order partial derivatives, the Fisher information 

matrix of would be  the  matrix  whose th entry would be given by 

= =  (Papathanasiou, 1993).  

 

The formula for the BIC is: (Akaike 1974). Under the assumption 

that the model errors or disturbances are i.d.d according to a normal distribution and that the boundary condition of  

the derivative of the log likelihood with respect to the true variance is zero, this becomes 

  based on an additive constant, which depends only on n and not on the  
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model where is the error variance. The error variance in the time series geopredictive seasonal district-level 

autoregressive malarial-related risk model would then be defined as   

Commonly singular models do not obey the regularity conditions underlying the derivation of BIC and the penalty 

structure in BIC generally does not reflect the frequentist large-sample behavior of their marginal likelihood. While 

large-sample theory for the marginal likelihood of singular geopredictive district-level malaria-related models has 

been developed recently , the resulting approximations still are highly dependent on the true sampled parameter 

estimator value which can lead to a paradox of circular reasoning. Guided by examples such as determining the 

number of components of mixture malaria-related district-level risk models, the number of factors in latent factor 

models or the rank in reduced-rank regression may instead be proposed as a resolution to this paradox for rendering 

a practical extension of BIC for singular district-malaria-related geopredictive risk model selection problems. The 

model however would be based, in part, on the likelihood function of the residually forecasted estimates and thus it 

would be closely related to the Akaike information criterion (Akaike 1974). 

The AIC  is a measure of the relative quality of a statistical model, founded on information entropy,for a given set of 

data which is quantitated by  the trade-off between the goodness of fit of the model and the complexity of the model 

(Akaike,  1974),).When fitting seasonal district-level geopredictive field/clinical/remote malaria-related risk models, 

it is possible to increase the likelihood by adding sampled explanatory hyperendemic transmission oriented  

estimators but, doing so may result in overfitting (see Jacob et al. 2011b, Jacob et al. 2009d). In relevance to chi-

squared( ) fitting for district-level geopredictive risk modeling,  if  a malarialogist/experimenter wishes to select 

amongst competing models where the likelihood functions assume that the underlying errors are normally 

distributed with mean zero and independent, a  model fitting may be employed .For fitting for the 

geopredictive malaria-related district-level model, the likelihood would then be  given 

by , 

where C would be a constant independent of the risk  model, and dependent only on the use of particular  sampled 

explanatory time series hyperendemic transmission-oriented data points.( i.e. those points that does not change if the 

data does not change).The AIC can then be given by 

. As only differences in AIC are 

meaningful, the constant C can then be ignored, allowing the malarialogist/experimenter to take 

for model comparisons. Another convenient form arises  also if the ζi are assumed to be 

identical and the residual sum of squares (RSS) is available. Then a malarialogist/experimenter would   achieve AIC 

= n ln(RSS/n) + 2k + C, where again C can be ignored in model comparisons. Fortunately,  both BIC and AIC can 

resolve this problem by introducing a penalty term for the number of parameter estimators in the risk model. 

Penalized regression methods in SPSS for simultaneous variable selection and coefficient estimation, especially 

those based on the lasso of Tibshirani (1996), have received a great deal of attention in recent years, mostly through 

frequentist models. Properties such as consistency in district-level time series geopredictive malaria-related risk-

based data attributes have been studied, and are achieved by different lasso variations (Jacob et al. 2009d). Within 

such an  SPSS derived autoregressive district-level risk related  model framework, a malarialogist/experimenter may  

look at a fully Bayesian formulation which may then reveal   flexiblity enough to encompass most versions of the 

lasso that have been previously considered in statistical and ArcGIS literature.  

The advantages of the hierarchical Bayesian formulations for quantitating district-level time series malaria-related 

model geopredictive parameter estimators in SPSS would then be many. For instance, Bayesian Network Model 

Nuggets may be able to accommodate and quantitate multiple geopredictive time series empirical sampled 

explanatory field/clinical/remote hyperendemic transmission oriented covariate coefficients efficiently in a 

probabilistic directed acyclic graphical model. This  probabilistic graphical model can  represent a empirical dataset 
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of district-level t geopredictive time series hyperendemic transmission oriented  random variables and their 

conditional dependencies via a directed acyclic graph (DAG). 

 In ArcMap
TM

 software a DAG can be defined as a directed district-level geopredictive malaria-related graph with 

no directed cycles. That is, it may be  formed by a collection of vertices and directed edges, each edge connecting 

one vertex to another, such that there is no way to start at some vertex v and follow a sequence of edges that 

eventually loops back to v again. Each directed acyclic district-level geopredictive malaria risk -related graph would 

then give rise to a partial order ≤ on its vertices, where u ≤ v occur when there exists a directed path from u to v in 

the DAG. However, many different DAGs may give rise to this same reachability relation in a district-level 

geopredictive malaria-related risk model. For example,  a DAG with two edges a → b and b → c  in a district-level 

malaria-related risk model output  would have the same reachability as the graph with three edges a → b, b → c, and 

a → c. Further, if G is a DAG in the risk model, its transitive reduction would then be the graph with the fewest 

edges which then would represent the same reachability as G, and its transitive closure could then be  the  district-

level graph with the most edges that represents the same reachability. 

Further, in ArcMap
TM

 the transitive closure of G would have an edge u → v for every related pair u ≤ v of distinct 

sampled hyperendemic transmission oriented elements in the reachability relation of G, and may therefore be 

thought of as a direct translation of the reachability relation ≤ into graph-theoretic terms. Thus, every partially 

ordered district-level seasonal malaria-related empirical dataset may be translated into a DAG in such a manner. If a 

DAG G then represents a partial order ≤ in the district-level geopredictive risk model then the transitive reduction of 

G would be a subgraph of G with an edge u → v for every pair in the covering relation of ≤. In such circumstances, 

transitive reductions in ArcMap
TM

 would be a useful in visualizing the partial orders of the geosampled  SPSS 

derived district-level malarial attributes they represent, because they would have fewer edges than other 

geopredictive graphs representing the same orders and this would lead to simpler graph drawings. A Hasse diagram, 

for instance  of a partial order may be generated which  is a drawing of the transitive reduction in which the 

orientation of each edge is shown by placing the starting vertex of the edge in a lower position than its ending vertex 

(see Griffith 2003). 

Fortunately, every directed SPSS constructed time series district-level malaria-related geopredictive ArcMap
TM

 

acyclic graph would have a topological ordering. This is an ordering of the vertices such that the starting endpoint of 

every edge in the malaria-related risk model would occur earlier in the ordering than the ending endpoint of the 

edge. In general, this ordering is not unique for district-level malaria-related geopredictive risk models; a DAG has a 

unique topological ordering, if and only if, it has a directed path containing all the vertices, in which case the 

ordering is the same as the order in which the vertices appear in the path (see Cressie 1993). The family of 

topological orderings of a DAG is the same as the family of linear extensions of the reachability relation for the 

DAG, so any two graphs representing the same partial order have the same set of topological orders (Griffith 2003). 

Topological sorting for district-level time series malaria- related geopredictive risk modeling is the algorithmic 

problem of finding topological orderings; it can be solved in linear time (see Jacob et al. 2009d). It may also then be 

also possible to check whether a given directed graph is a DAG in linear time, for a robust geopredictive malaria-

related district-level model by attempting to find a topological ordering and then testing whether the resulting 

ordering is valid. 

Importantly, some algorithms become simpler when used on DAGs in ArcMap
TM

 instead of general graphs, based 

on the principle of topological ordering. For instance, it may be possible to find shortest paths and longest paths 

from a given starting vertex in DAGs in linear time for a SPSS derived district-level geopredictive malaria-related 

model by processing the vertices in a topological order, and calculating the path length for each vertex  in  

ArcMap
TM

 to be either the minimum or maximum length obtained via any of its incoming edges. In contrast, for 

arbitrary district-level malaria-related risk graphs the shortest path may require slower algorithms such as Dijkstra's 

algorithm as longest paths in arbitrary geopredictive graphs are hard to find. 

Dijkstra's algorithm is an algorithm for finding a graph geodesic, (i.e., the shortest path between two graph vertices 

in a graph). It functions by constructing a shortest-path tree from the initial vertex to every other vertex in a 

graph(ArcMap
TM

 malaria-related geopredictive district-level time series).The algorithm is implemented as 
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Dijkstra[g] in the SPSS package`. The worst-case running time for the Dijkstra algorithm on a graph with n  nodes 

and  m edges is  as it allows for directed cycles. The algorithm will find the shortest paths from a source node 

S to all other nodes in   time series malaria-related district-level graph. For a robust malaria-related geopredictive 

model this  may be illustrated as for node selection and for distance updates. While is the best 

possible complexity for dense malaria time series district-level graphs, the complexity can be improved significantly 

for sparse graphs in  SAS/GIS With slight modifications, Dijkstra's algorithm can be also used as a reverse 

algorithm in the database which can help  maintain minimum spanning trees for the sink node in  a district-level 

malaria-related  geopredictive risk model. With further modifications, it can be extended to become bidirectional. 

The bottleneck in Dijkstra's algorithm in SAS/GIS is node selection (www.sas.edu).  

DAG representations of partial orderings have many applications in district-level geopredictive time series malaria-

related model in scheduling problems for systems of tasks with ordering constraints. For instance, a DAG may be 

employed to describe the dependencies between cells of a field/clinical/remote sampled district-level spreadsheet. 

Further, if one cell is computed by a formula involving the sampled hyperendemic transmission oriented value of a 

second cell, a DAG edge may be drawn from the second cell to the first one. If the input  district-level geopredictive 

explanatory hyperendemic transmission covariate coefficient values to the spreadsheet change, all of the remaining 

sampled values of the spreadsheet may be recomputed with a single evaluation per cell, by topologically ordering 

the cells and re-evaluating each cell in an ordered format. Dependency graphs without circular dependencies form 

directed acyclic graphs (Cressie 1993). 

Thus, employing DAG, a Bayesian network could represent the probabilistic relationships between regressed 

seasonal sampled statistically significant georeferenced explanatory   hyperendemic transmission oriented covariate 

coefficients and geolocations of district-level disease transmission. Formally, Bayesian networks are directed acyclic 

graphs whose nodes represent random variables in the Bayesian sense: they may be observable quantities, latent 

variables, unknown parameters or hypotheses (Griffith 2003). Edges may then represent conditional dependencies in 

a district-level geopredictive malaria-related risk model; nodes which are not connected may then represent sampled 

hyperendemic transmission oriented variables which are conditionally independent of each other. Each node would 

then be  associated with a probability function that would take as input a particular set of  sampled district-level 

hyperendemic transmission oriented covariate coefficient values for the node's parent variables and thereafter  

render  the probability of the geopredictive variable represented by the node. For instance, Jacob et al. (2011d) found 

that when  the parents are  Boolean variables in a spectral endmember georeferenced aquatic larval habitat of 

Anopheline arabiensis, a major vector of malaria in a riceland agroecosystem in Mwea, Kenya, then the probability 

function could be represented by a table of entries, one entry for each of the possible combinations of its 

parents being true or false.  

 In programming languages that have a built-in Boolean data type, such as Pascal and Java, the comparison 

operators such as > and ≠ are usually defined to return a Boolean value. Conditional and iterative commands may be  

then defined to test Boolean-valued district-level time series geopredictive malaria-related risk model expressions. 

Languages without an explicit Boolean data type, like C90 and Lisp, may then geographically represent truth values 

in a robust time series geopredictive malaria-related district-level model by some other data type. Lisp uses an 

empty list for false, and any other value for true . C uses an integer type, where geopredictive relational expressions 

like i > j and logical expressions connected by && whereby || are defined to have a sampled district-level 

explanatory malaria-related hyperendemic transmission oriented covariate coefficient  value 1 if true and 0 if false, 

whereas the test parts treat any non-zero value as true ( see Kernighan  and Ritchie 1978) Indeed, a robust Boolean 

malaria-related hyperendemic transmission oriented district-level geopredictor variable may be implemented as a 

numerical variable with a single binary digit (bit), which unfortunately can store only two values currently.  

It is worth noting that the implementation of booleans in computers are most likely represented as a full word, rather 

than a bit; this is usually due to the ways computers transfer blocks of information. Most programming languages, 

even those that do not have an explicit Boolean type, have support for Boolean algebraic operations for robust 

geopredictive malaria-related district-level  risk modeling  such as conjunction (AND, &, *), disjunction (OR, |, +), 

equivalence (EQV, =, ==), exclusive or/non-equivalence (XOR, NEQV, ^, !=), and not (NOT, ~, !). In some 
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languages, the "true" and "false" values belong to separate classes(e.g. True and False, resp.)so there is no single 

Boolean "type." In SQL, which uses a three-valued logic for explicit comparisons because of its special treatment of 

Nulls, a Boolean district-level geopredictive malaria-related data type may also be defined to include more than two 

truth values, so that SQL "Booleans" can store all logical sampled hyperendemic transmission oriented covariate 

coefficient measurement values resulting from the evaluation of predicates in SQL. The column of the Boolean type 

seasonal malaria-related risk model outputs can then be restricted to just TRUE and FALSE. By so doing, 

reforecasting ideas may be applied to undirected, and possibly cyclic, graphs employing Markov networks for 

quantitating empirical sampled field/clinical/remote district-level hyperendemic transmission explanatory covariate 

coefficients. Efficient algorithms exist for seasonal vector arthropod-related risk mapping that perform inference and 

learning in Bayesian networks ( Jacob et al. 2012b,Jacob et al. 2011c,Griffith 2005).  

As such, generalizations of Bayesian networks may represent and solve decision problems in SPSS under 

uncertainty when constructing a robust geopredictive district-level malaria-related risk model. For instance, suppose 

that there are two events which could influence an empirical -sampled malaria-related hyperendemic transmission 

oriented covariate coefficient (e.g., total density count of Anopheline gambiae s.l. aquatic larval habitat) levels of 

statistical significance: either be it during periods of drought or conversely during periods of high rainfall. Also, 

suppose that the rain has a direct effect on the status of the district-sampled malaria-related mosquito aquatic 

habitat‘s total larval density count namely that when it rains, the habitat has higher immature count values). Then the 

situation can be modeled with a Bayesian network since all three district-sampled time series malaria-related 

geopredictive variables would then have two possible values, T (for true) and F (for false). The joint probability 

function then could be expressed as where the names of the 

variables abbreviated in SPSS to G = dry(yes/no), S =high habitat density count (yes/no), and R = Raining (yes/no). 

The model could then answer questions like "What is the probability that when it is raining, a georeferenced district-

sampled An. gambiae s.l. aquatic habitat has high larval  abundance count by using the conditional probability 

formula and summing over all nuisance variables: 

 

 

 

As is pointed out explicitly in the example numerator, the joint probability function may be used to calculate each 

iteration of the summation function, marginalizing over in the numerator, and marginalizing over and  in the 

denominator of the geopredictive malaria-related risk model. 

Alternatively, if a malarialogist/experimenter desires to answer an interventional question: "What is the likelihood 

that a sampled district-level geopredictive habitat would be classified productive during a short rain period ?" . The 

answer would then  be governed by the post-intervention joint distribution function 

obtained by removing the factor from the pre-

intervention distribution. As expected, the likelihood of a sampled district-level larval habitat being classified 

productive would then be  unaffected by the action: .If, moreover,  the 

malarialogist/experimenter wishes to forecast the impact of other geosampled district-level  estimators on a sampled 

larval habitat (drought-related geopredictive variables),  he or she may then simply employ 

with the term removed.  

However, these district-level SPSS-derived time series geopredictive malaria-related hyperendemic transmission 

oriented  data attributes may  not be feasible when some of the variables are unobserved. The effect of the action 
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 in the sampled district-level hypendemic trasnmission oriented variables can still be forecasted however; 

whenever a criterion called "back-door" is satisfied. For instance, when constructing a Bayesian Network employing 

multiple geosampled district-level malaria-related geopredictive risk variables , a set Z of nodes can be observed that 

d-separates (or blocks) all back-door paths from X to Y then 

. A back-door path is one that ends with an arrow into 

X (see Cressie 1993).  For instance, the set Z = R is admissible for forecasting the effect of S = T on G  in a robust 

district-level geopredictive hyperendemic transmission oriented model may since R d-separate  is the only back-door 

path S ← R → G. However, if S is not observed in the district-level malaria-related risk model  there would be no 

other set that d-separates this path and the effect of (S = T) and  thus (G) will not be forecasted from passive sampled 

district-level regressed malaria-related hyperendemic transmission oriented observations. A 

malarialogist/experimenter then may remark that P(G|do(S = T)) is not "identifiable." Further, a 

malarialogist/experimenter may not be able to   quantitate if the observed dependence between S and G is due to a 

causal connection or is spurious (e.g., apparent dependence arising from a common cause, R) (e.g.,Simpson's 

paradox).To determine whether a causal relation in the district-level geopredictive risk model is identified from an 

arbitrary Bayesian network with unobserved field/clinical/remote sampled variables,  a malarialogist/experimenter 

may instead employ the three rules of "do-calculus"and test whether all do terms can be removed from the 

expression of that relation, thus confirming that the desired quantity is estimable from frequency 

data(http://reference.wolfram.com/mathematica/howto/DoCalculus.html)  

Using a Bayesian network in SAS/GIS can save considerable amounts of memory, if the dependencies in the joint 

distribution are sparse. For example, a naive way of storing the conditional probabilities of 10 two-valued district-

level malaria-related geopredictive hyperendemic transmission variables as a table requires storage space for 

 sampled values. If the local distributions of no geopredictive malaria-related variable depends on 

more than 3 parent variables, the Bayesian district-level network representation in SAS/GIS would only need to 

store at most  values.One advantage of Bayesian networks for district-level malaria-related 

geopredictive risk modeling is that it is intuitively easier for a human to understand a sparse set of direct 

dependencies and local distributions than complete joint distribution. 

The model nugget Model tab in SAS/GIS is split into two panels for generating Bayesian inferences from 

geopredictive district-level malaria-related risk models. The left panel view contains a network graph of nodes 

that would then display the relationship between the target (e.g., geosampled district-level statistically significant 

ecozonal hyperendemic transmission covariate )  and its most important observational predictors, as well as the 

relationship between the predictors. The importance of each predictor could be displayed in SAS/GIS by the 

density of its color; (e.g., a strong color shows an important  sampled district-level hyperendemic transmission 

oriented predictor, and vice versa).  The bin values for nodes representing a range of the district-level empirical 

sampled hyperendemic transmission oriented estimators would then be displayed in a pop up ToolTip when a 

malarialogist/experimenter hovers the mouse pointer over the node. Thereafter, the malarialogist/experimenter 

can employ the Modeler's graph tools in SAS/GIS to interact, edit, and save an district-level malaria-related 

graph. This data may then be exported and processed in other statistical/cartographic software, for use in other 

applications such a MS Word.  

Commonly SAS/GIS will display conditional probabilities in a malaria-related geopredictive district-level model 

for each node in the network as a mini graph. By hovering the mouse pointer over a district-level geopredictive 

time series malaria-related graph its  hyperendemic transmission oriented values in a popup ToolTip will be 

displayed. In the right panel observational geopredictor importance may be quantitated. The output panel would 

then display a chart that indicates the relative importance of each district-level observational predictor in 

estimating the seasonal  malaria-related risk model. Further, conditional probabilities in the residually forecasted 

uncertainty estimates would be quantitated. When a malariologist/experimenter selects a node or mini 

distribution graph in the left panel in SAS/GIS, an associated conditional probabilities table may be also 

displayed in the right panel. This table would contain the conditional probability explanatory hyperendemic 

transmission oriented covariate coefficient measurement value for each node value and each combination of 

http://en.wikipedia.org/wiki/Simpson%27s_paradox
http://en.wikipedia.org/wiki/Simpson%27s_paradox
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values in its parent nodes. In addition, the output will include the number of records observed in SAS/GIS for 

each record value and each combination of values in the parent nodes. 

 In addition to the usual ease-of-interpretation of hierarchical models, the Bayesian formulation in SAS/GIS could 

produce valid standard errors (which can be problematic for the frequentist lasso) which would be based on a 

geometrically ergodic Markov chain. From a homogeneous Markov chain with the following property: 

may then  be expressed employing a georefernced dataset of empirical 

sampled field/clinical/remote explanatory hyperendemic trasnmission oriented covariate coefficients where 

 are the transition probabilities. The distribution on the state 

space of the chain  would then be   stationary distribution. If for all  in the 

malaria-related district-level dataset, then for all and . Fortunately, a fundamental 

property of Markov chains,  enables one to find the 

without calculating the limits (Gilks 1996). Let be the 

moment of first return to the state (for a discrete-time Markov chain), then ( Gilks 1996). A 

similar but more complicated relation holds for a continuous-time Markov chain in a geopredictive time series  

malaria-related risk model. The trajectories of an ergodic Markov chain satisfy the ergodic theorem: If is a 

function on the state space of the chain , then, in the discrete-time case, 

while in the continuous-time case the sum on the left is replaced by 

an integral  ( Freedman 1975). A Markov chain for which there are and such that for all , 

 is called geometrically ergodic( Kemeny and Snell 1960).  

 Interestingly, a sufficient condition for geometric ergodicity of an ergodic Markov chain is the Doeblin condition 

(which for a discrete (finite or countable) Markov chain may be stated as follows: There are an and a state 

such that . If the Doeblin condition is satisfied, then in a predictive malaria-related 

model then for the constants the relation holds (Seneta,1981). As such, a 

malarialogist/experimenter could  prove non explosiveness and a lower bound of the spectral gap via the strong 

Doeblin condition for a large class of stochastic processes in a robust  geopredictive district-level time series 

malaria-related risk model by evolving in the interior of a region D µ Rd with boundary  D according to an 

underlying Markov process with transition probabilities p(t; x; dy) whereby , undergoing jumps to a random district-

level hyperendemic transmission oriented sampled point x in D with distribution º»(dx) as soon as they reach a 

boundary point ». Besides usual regularity conditions on p(t; x; dy),  a malarialogist/experimenter would then  

simply require a tightness condition on the family of measures º», 

for preventing mass from escaping to the boundary. The setup can be applied to a multitude of geopredictive time 

series malaria-related risk models. 

 

A malarialogist/experimenter then could compare the performance of the Bayesian lassos to their frequentist 

counterparts using simulated district-level regressed field/clinical/remote sampled explanatory hyperendemic 

transmission oriented covariate coefficients in SPSS, if so desired.. Previous linear-based lasso papers employed for 

geopredictive malaria-related risk modeling have revealed problems for forecasting statistically significant seasonal 

hyperendemic geopredictive transmission explanatory oriented covariate coefficients. In terms of prediction mean 

squared error, the Bayesian lasso performance is similar to and, in some cases, better than, the frequentist malarial –

related geopredictive district-level lasso (see Jacob et al. 2011c).  

http://www.encyclopediaofmath.org/index.php/Markov_chain
http://www.encyclopediaofmath.org/index.php/Transition_probabilities
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Additionally, in SPSS, a malariaologist/experimenter may point out that is a biased estimator for the true 

variance,  in a geopredictive seasonal district-level malaria-related risk model. This estimator can be determined 

by letting denote the unbiased form of the model parameter estimators in the Forecasting add-on module in SPSS 

(http://www.spss.com/worldwide) for approximating the error variance employing 

Deviance may be then defined as the log likelihood of the final model, 

multiplied in SPSS by calculating the deviance as 

( www.spss.com). By so doing, under the 

assumption of normality then   may be more found to be more tractable for district-

level malaria-related risk modeling. Note that there is a constant added that must follow from the transition from 

log-likelihood to  in the SPSS dervived model; however, in using the BIC to determine the "best" model the 

constant becomes trivial. Given any two estimated models, the model with the lower value of BIC is the one to be 

preferred (Cressie 1993).  

The BIC is an increasing function of and an increasing function of k. That is, unexplained variation in the 

geopredictive malaria-related dependent variable (e.g., total seasonal district- level prevalence rates) and the number 

of explanatory hyperendemic transmission oriented variables would increase the value of BIC. Hence, lower BIC 

would imply either fewer explanatory district-level field/clinical/remote sampled malaria-related variables, better fit, 

or both in the residual forecasts. The BIC generally penalizes free geoparameter estimators  more strongly than does 

the AIC in geopredictive autoregressive malarial risk modeling though it depends on the size of n and relative 

magnitude of n and k.(see Jacob et al. 2011d). The Forecasting add-on module employed with the SPSS Statistics 

Core system then could quantitate results for forecast values, fit values, observed values, upper and lower 

confidence limits, residual autocorrelations and partial autocorrelation.  

 Interestingly, partial autocorrelation plots are a commonly used tool for model identification in Box-Jenkins models 

(Box and Jenkins, 1970). The partial autocorrelation at lag k is the autocorrelation between Xt and Xt-k that is not 

accounted for by lags 1 through k-1 (Griffith 2003). There are multiple algorithms for computing the partial 

autocorrelation in a robust geopredictive time series district level malaria-related risk model based on a dataset of 

empirical sampled district-level explanatory field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented covariate coefficients in SPSS. For instance, the residual partial autocorrelation function can 

display a table of latent autocorrelations coefficients by lag for each estimated seasonal predictive district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented regressor. Additionally, the table 

could include the confidence intervals for the autocorrelation in SPSS, if so desired. Specifically, partial 

autocorrelations are useful in identifying the order of an autoregressive model (see Brockwell, 1991). The partial 

autocorrelation of an AR(p) process is zero at lag p+1 (Griffith 2003). If the sample autocorrelation plot in SPSS
 

indicates then that an AR-constructed district-level predictive seasonal forecasting field/clinical/remote sampled 

malaria-related hyperendmeic transmission oriented regression-based risk model may be appropriate, then the 

sample partial autocorrelation plot may be further examined to help identify the order of the estimates. In actuality, 

the malarialogist/experimenter would be searching for the geographic point on the plot where the partial 

autocorrelations in the risk model residual forecasts essentially become zero when quantitating the confidence 

interval for summarizing the   statistical significance in the regressed district-level empirical parameter estimator 

dataset. Commonly, the approximate 95% confidence interval for the partial autocorrelations are at  

when employing SPSS
 
autocorrelation tests such as Ljung-Box Q tests . 

http://www.spss.com/worldwide
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Dependent_variable
http://www.itl.nist.gov/div898/handbook/pmc/pmc/section7/pmc7.htm#BoxJenkins
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The Ljung-Box Q-test is a quantitative way to test for autocorrelation at multiple lags jointly in SPSS. Commonly, 

the null hypothesis for the Ljung-Box Q-test for a predictive malaria-related district-level regression based risk 

model is that the first m autocorrelations are jointly zero in    If N is the length of the 

observed seasonal district-level field/clinical/remote sampled geopredictive malarial-related time series, for 

example, choosing  may reveal power for testing explanatory multiple hyperendemic transmission 

oriented covariate coefficient measurement values of m. The choice of m affects test performance (Box and Pierce 

1970).If seasonal autocorrelation is possible, testing at larger values of m in the risk model, such as 10 or 15, may 

render robust unbiased dependent residual forecasts in a stochastic/deterministic interpolation algorithm ( e.g., co-

Kriged model). The Ljung-Box test statistic in SPSS is commonly given 

by (http://www.unt.edu/rss/class/Jon/SPSS_SC/Manuals/v18/PASW%20Forecasti

ng%2018.pdf). Under the null hypothesis, Q (m), a seasonal predictive regression-based malaria-related district-

level risk model distribution could then be robustly constructed in SPSS.This autocorrelation test is a 

modification of the Box-Pierce Portmanteau test statistic. The Ljung-Box Q-test test is an improved version of the 

Box–Pierce test, having been devised at essentially the same time; a seemingly trivial simplification (omitted in the 

improved test) was found to have a deleterious effect (see Ljung, and Box, 1978 

On the other hand, a portmanteau test generated in SAS/GIS is a type of statistical hypothesis test in which 

the null hypothesis is well specified, but the alternative hypothesis is more loosely specified. Box and Pierce (1970) 

showed that a portmanteau statistic essentially is a multiple of a sum of squared residual autocorrelation coefficients 

that follows a chi-square distribution. This statistic is now generally known as the Box–Pierce statistic. Ljung and 

Box (1978) and McLeod (1978) suggested improved portmanteau statistics to rectify the conservative nature of the 

Box–Pierce statistic. McLeod (1978) then considered the distribution of residual autocorrelations using a martingale 

difference approach.  

A basic definition of a discrete-time martingale in SAS/GIS is a discrete-time stochastic process (i.e., a 

sequence of randomized district-level field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented variables) X1, X2, X3, ... that satisfies for any time 

n, That is, the conditional expected value of the 

next sampled hyperendemic transmission oriented field/clinical/remote observation, given all the past observations, 

is equal to the last observation. Due to the linearity of expectation, this second requirement would be equivalent 

to or which 

states that the average "winnings" from district-sampled malaria-related hyperendemic transmission oriented 

observation  to observation are 0, for instance. More generally, a sequence Y1, Y2, Y3 ... is said to be a 

martingale with respect to another sequence X1, X2, X3 ... if for all 

n  

Similarly, a continuous-time martingale with respect to the stochastic process Xt in a geopredictive seasonal  

malaria-related risk model would be a stochastic process Yt such that for all 

t This model would express the property 

that the conditional expectation of a district-level field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented observation at time t, given all the observations up to time , is equal to the observation at 

time s provided of course that s ≤ t. Further, in  terms of full generality, a stochastic process  

in a geopredictive district-level malarial risk model would be a martingale with respect to a filtration and 

probability measure P ifΣ∗ is a filtration of the underlying probability space (Ω, Σ, P) ; Y is adapted to the filtration 

Σ∗, i.e., for each t in the index set T, the random variable Yt is a Σt-measurable function; for each t, Yt lies in the L
p
 

space L
1
(Ω, Σt, P; S), (i.e. for all s and t with s < t and all F ∈ Σs, 

where χF denotes the indicator function of the event F). In Grimmett and 
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Stirzaker's Probability and Random Processes, (He, Wang, Yan 1992),  this last condition is denoted as 

which is a general form of conditional expectation It is important to note that the property 

of being a martingale in a geopredictive malaria-related risk model constructed from an empirical dataset of district-

level field/clinical/remote sampled malaria-related hyperendemic transmission oriented observation would involve 

both the filtration and the probability measure with respect to which the expectations were employed to construct the 

model. It is possible that Y could be a martingale with respect to one measure but not another one; the Girsanov 

theorem offers a way to find a measure with respect to which an Itō process is a martingale. 

Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if Q 

is a measure absolutely continuous with respect to P then every P-semimartingale is a Q-semimartingale. This 

theoreum underlying stochastic process is a Wiener process (see Cressie 1993). This special case is sufficient for 

risk-neutral pricing in the Black-Scholes model and in many other models (e.g. all continuous models) (see Jacob et 

al. 2013b). As such, employing this theorem   when constructing a geopredictive malaria-related district-

level model would be like qunatiating a Wiener process on the Wiener probability space . Therefater , 

 would be a measurable process in the residually forecasted estimates adapted to the natural filtration of the 

Wiener process .]Given an adapted process with a malarialogist/experimenter could then 

define  in a a district-level malarial risk model where is the stochastic exponential (i.e., 

Doléans exponential) of X with respect to W, i.e.   in the risk model would 

then be a strictly positive local martingale, and as such  a probability measure Q can be defined on using a  

Radon–Nikodym derivative   

In mathematics, the Radon–Nikodym theorem is a result in measure theory that states that, given a 

measurable space (X,Σ), if a ζ-finite measure on (X,Σ) is absolutely continuous with respect to a ζ-finite measure 

on (X,Σ), then there is a measurable function f on X and taking values in [0,∞), such that for 

any measurable set A. Then for each t the field measure Q restricted to the unaugmented sigma fields would be 

equivalent to P restricted to Further, if Y is a local martingale in the  empirical sampled field/clinical/remote 

sampled malaria-related hyperendmeic transmission oriented data attributes under P then the 

process is a Q local martingale on the filtered probability space .  

Thus, if a malarialogist/experimenter lets ν, μ, and λ be ζ-finite measures on the same measure space in a 

geopredictive malaria-related model as  ν ≪ λ and μ ≪ λ where ν and μ are absolutely continuous in respect to λ, 

then  .If ν ≪ μ ≪ λ, then .In particular, if μ ≪ ν and ν ≪ μ, 

then .If μ ≪ λ and g is a μ-integrable function, then  If ν is 

a finite signed or complex measure, then  
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On the other hand, an Itō process may be  defined to be an adapted stochastic process in a geopredictive time series 

malaria-related district-level risk model in SAS/GIS which can be expressed as the sum of an integral with respect to 

Brownian motion and an integral with respect to time, Here, B is a 

Brownian motion and it is required that ζ is a predictable B-integrable process, and μ is predictable and Lebesgue 

integrable. That is, for each t would then occur during the quantitation process of the 

field/clinical/remote sampled malaria-related explanatory hyperendemic transmission oriented covariate coefficients. 

For example. The stochastic integral can then be extended to an Itō processes, as 

This process may be defined in the district-level malarial risk 

model for all locally bounded and predictable integrands. More generally, it is required that Hζ be B-integrable and 

Hμ be Lebesgue integrable, so that (see Cressie 1993). Such predictable 

field/clinical/remote sampled malaria-related explanatory hyperendemic transmission oriented processes H would be 

considered X-integrable. 

An important result for the study of Itō processes is Itō's lemma. In its simplest form, for any twice continuously 

differentiable function f on the reals and Itō process X as described above, it states that f(X) is itself an Itō process 

satisfying  (Hagen 2004). This is the stochastic calculus 

version of the change of variables formula and chain rule. This mathematical output would differ from the standard 

results in a geopredictive seasonal malaria-related regression-based model due to the additional term involving the 

second derivative of f, which would be derived based on the property that Brownian motion has non-zero quadratic 

variation. 

Another widely used technique for testing geopredictive seasonal district-level malaria-related model adequacy in 

SPSS is the score or Lagrange multiplier test procedure. Rao's score test, or the score test (often known as the 

Lagrange multiplier test in econometrics) is a statistical test of a simple null hypothesis that a parameter of interest 

is equal to some particular value . It is the most powerful test when the true value of is close to . The main 

advantage of the Score-test for predictive malaria-regression based modeling is that it does not require an estimate of 

the information under the alternative hypothesis or unconstrained maximum likelihood. This makes testing feasible 

when the unconstrained maximum likelihood estimate is a boundary point in the parameter space. It can be easily 

computed by letting  be the likelihood function  in the malaria-related which  would subsequently depend on a 

univariate parameter a. Thereafter, by letting be the seasonal district-level field/clinical/remote sampled malaria-

related hyperendemic transmission oriented observational data. the score could be calculated as  

where The observed information would be then quantitated employing 

The statistic to test is  in the residually 

forecasted estimates would have an asymptotic distribution of , when is true. 

 As pointed out by Box et al. (1994), the score test procedure is essentially a quadratic form in the residual 

autocorrelation quantitation procedures, but of a more complex form than the portmanteau. Ling and Li (1997) 

andWong and Li (2002) derived multivariate conditional heteroscedastic detection techniques using these models. 

As it is clear that the Ljung–Box statistic and McLeod–Li/Li–Mak statistics are sensitive to lack of fit in the first and 

second moments of the data structure respectively (Cressie 1993). As such, a malarialogist/experimenter can expect 

mixed statistics to be most powerful but only when the fitted predictive seasonal malaria-related risk model has 

disparity in both the first and second moments. In such circumstances the mixed statistics would simply be a sum of 
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the Ljung–Box and McLeod–Li statistic or Ljung–Box and Li–Mak statistic in the district-level malaria model 

output. The independence of the two statistics may then be shown then by a Monte Carlo simulation study of the 

size and power of the mixed statistic. In general, tests constructed in this context can have the property of being at 

least moderately powerful against a wide range of departures from the null hypothesis. Markov chain Monte Carlo 

(MCMC) methods (which include random walk Monte Carlo methods) are a class of algorithms for sampling from 

probability distributions based on constructing a Markov chain that has the desired distribution as its equilibrium 

distribution (Gilks 1996). 

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that rely on 

repeated random sampling to obtain numerical results by running simulations many times over in order to calculate 

those same probabilities heuristically. They are often used in physical and mathematical problems and are most 

suited to be applied when it is impossible to obtain a closed-form expression or infeasible to apply a deterministic 

algorithm. In seasonal  malaria-related geopredictive risk modeling Monte Carlo methods are mainly used in three 

distinct problems for  optimization, numerical integration and generation of samples from a probability distribution 

(see Jacob et al. 2011c). Monte Carlo simulation methods do not always require truly random numbers to be useful 

— while for some applications, such as primality testing, unpredictability is vital (Cressie 1993). Fortunately, most 

useful techniques in geopredictive district-level malaria risk modeling use deterministic, pseudorandom sequences, 

making it easy to test and re-run simulations. The only quality usually necessary to make good simulations is for the 

pseudo-random sequence to appear "random enough" in a certain sense. What this means depends on the application 

of the predictive risk model residual forecasts, but typically they should pass a series of statistical tests. Testing that 

the numbers are uniformly distributed or follow another desired distribution when a large enough number of 

elements of the sequence are considered is one of the simplest and most common ones. 

Further, Monte Carlo simulation is the process of generating independent, random draws from a specified 

probabilistic model. When simulating time series models, one draw (or realization) is an entire sample path of 

specified length N, y1, y2,...,yN. When a malarialogist/experimenter  generates a large number of draws from a 

regressed empirical dataset of district-level geopredictive malaria-related explanatory hyperendemic transmission 

oriented covariate coefficinets  for  instance, say M,  then M sample paths will be generated each of length N.  

Commonly applications of Monte Carlo simulation are used for demonstrating theoretical results, forecasting future 

events and estimating the probability of future events (Gilks 1996) The time series portion of a predictive district-

level malaria-related risk  model would then  specify the dynamic evolution of the unconditional disturbance process 

over time through a conditional mean structure. To perform Monte Carlo simulation of  a robust geopredictive 

malaria-related regression based risk  model, residually forecasted estimates with ARIMA errors therefater, SPSS 

would simply specify presample innovations or unconditional disturbances or use default presample data.By so 

doing, uncorrelated innovation series from a probability distribution would be generated from the  regressed 

empirical explanatory hyperendemic transmission oriented covariates. Thereafter, by filtering the innovations 

through the ARIMA error model simulated unconditional disturbances can be parsimoniously derived.  

Thus, in applied  statistics for seasonal geopredictive malaria-related district-level risk models, a portmanteau test  

could provide a reasonable way of proceeding as a general check of a model's match to an empirical sampled dataset 

of  explanatory geopredictive field/clinical/remote sampled malaria-related hyperendemic transmission oriented 

covariate coefficients  to determine uncertain departures  from the underlying district-level data generating process. 

Fortunately, in SPSS use of such tests would avoid having to be very specific about the particular type of departure 

being tested. This statistical test can then determine whether any of a group of autocorrelations in a regressed 

empirical sampled district-level malarial-related ecological dataset in SPSS is different from zero. Instead of testing 

randomness at each distinct lag. The portmanteau test would evaluate the "overall" randomness in the district-level 

geopredictive field/clinical/remote sampled malaria-related hyperendemic transmission oriented estimators based on 

a number of lags. Tests constructed in this context can have the property of being at least moderately powerful 

against a wide range of departures from the null hypothesis in a malarial district-level model output. For instance, in 

applied statistics for district-level predictive malaria-related risk modeling, a portmanteau test can provide a 

reasonable way of proceeding as a general check of a  model's match to an empirical sampled dataset of district-level 

field/clinical/remote sampled malaria-related explanatory hyperendemic transmission oriented covariate coefficients 

to summarize different ways in which the model may depart from the underlying district-level data generating 
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process. Fortunately, use of such tests can avoid having to be very specific in SPSS about the particular type of 

departure being tested in a robust predictive district-level malaria-related time series analysis.  

The portmanteau test is also useful in working with ARIMA models (Griffith 2003). These statistics could then be 

employed to test for significant correlation up to lag in a robust geopredictive district-level malaria-related 

hyperendemic transmission oriented risk model. It is well known that for i.d.d data, the autocorrelations behave as 

independent normally distributed random variables, and therefore under the null hypothesis (e.g., correctly fitted 

predictive time series malaria-related risk model) both these data attributes may be shown to be asymptotically 

distributed chi-squared random variables with degrees of freedom, when the order of AR and MA terms are 

estimated accurately in a fitted model. Further, in  the context of regression analysis, including  an analysis with 

time series structures, a portmanteau test can be devised in SPSS  which allows for a general test to made for 

quantitating a range of seasonal nonlinear field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented data transformations based on various combinations of the explanatory district-level malaria-related 

covariate coefficients. By so doing, chi-squared critical values of a particular district-level parameter estimator 

significance level can be quantitated to determine if there is evidence to suggest the fitted ARIMA process does not 

adequately model the correlation in the sampled empirical dataset. 

A district-level ARIMA predictive autoregressive malaria-related empirical-sampled dataset employing and   

in SPSS can then  be selected, if so desired, so that the zeros of both polynomials lie outside the unit circle in order 

to avoid generating unbounded processes in the residual forecasts. By so doing, unbiased optimal district-level 

explanatory hyperendemic transmission-oriented uncertainty covariate coefficients would be rendered with the 

regressed residuals and their estimated significance levels very parsimoniously. In the mathematical field of 

numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of 

known data points(Cressie 1993) As such, the regressed district-level explanatory  district-level field/clinical/remote 

malaria-related hyperendemic transmission oriented residual forecasts would be based on rigorously quantitated 

difference operator ``unit root'' (1-B) behavior in the time series for d>0.5, for example. A robust ARIMA seasonal 

geopredictive malaria-related district-level risk model can then be provided in SPSS by the ARIMA (1, 0, and 0) 

first order autoregressive model [i.e., ]. 

Additionally, the Time Series Modeler procedure estimates in SPSS can also be employed to construct exponential 

smoothing, univariate ARIMA, and multivariate ARIMA and/or transfer function models from empirical ecological 

datasets of time series district-level hyperendemic transmission oriented predictive malaria-related field/clinical/ 

remote sampled data attributes. The procedure would include an Expert Modeler that would automatically identify 

and estimate the best-fitting ARIMA or exponential smoothing model for one or more dependent variable series, 

thereby eliminating the need to identify an appropriate model fit through trial and error. The Time Series Modeler 

allows building custom non-seasonal or seasonal ARIMA models with or without a fixed set of data 

variable(http://www-01.ibm.com/software/analytics/spss/). Thereafter, transfer functions can be defined for any or 

all of the regressed hyperendemic transmission-oriented seasonal-sampled covariates.  By so doing, goodness-of-fit 

measures in SPSS for the interpolated regression-based model residually forecasted hyperendemic transmission 

oriented data attributes can then include: stationary R-square, R
2
 MAE, MAPE, MaxAE, MaxAPE, and normalized 

BIC estimators along with the standard RSME. 

Thereafter, if so desired, the Expert Modeler in SPSS could statistically locate the optimal p,d,q district-level 

optimal field/clinical/remote sampled malaria-related hyperendemic transmission oriented estimators rendered from 

the predictive district-level malarial-related risk model. The Expert Modeler can automatically find the best-fitting 

model for each dependent series (www.spss.com). If the seasonal sampled empirical dataset of the malaria-related 

independent predictor variables are specified, for instance, the Expert Modeler would then select, for inclusion in the 

ARIMA model, those that have a statistically significant relationship with the dependent series. Routinely, district-

level time series malaria-related hyperendemic transmission oriented model variables would then be transformed 

where appropriate using differencing and/or a square root or natural log transformation. By default, the Expert 

Modeler would consider both exponential smoothing and ARIMA models. SPSS
 
offers a variety of exponential 

smoothing models that differ in their treatment of trend and seasonality (www.spss.com). For instance, exponential 
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smoothing district-level predictive hyperendemeic transmission oriented risk models can be classified as either 

seasonal or nonseasonal. Thereafter, outlier estimates can be determined in a robust model. An outlying observation, 

or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs (Grubbs 

1969). 

Outliers can occur by chance in any regressed empirical dataset of seasonally forecasted district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented geopredictive autoregressive 

explanatory covariate coefficients which are often indicative either of measurement error or, that the sampled 

population has a heavy-tailed distribution (see  Jacob et al. 2012b, Jacob et al. 2009d). Fortunately, in an SPSS 

derived district-level malarial-related model, heavy-tailed distributions (i.e., district-level probability distributions) 

can be delineated whereby, the tails are not exponentially bounded: that is, they have heavier tails than the 

exponential distribution. In many applications, it is the right tail of the distribution that is of interest to 

malariologists/experimenters but, a district-level forecasted risk distribution may have a heavy left tail, or both tails 

may be heavy. A right heavy tailed distribution is one with infinite moment generating function on (0,∞), that is, X 

has right heavy tail if, E(e
tX

)= ∞ t >0  (Hosmer and Lemeshew 2000). There are three important subclasses of heavy-

tailed distributions in seasonal geopredictive time series malarial risk model construction; the fat-tailed distributions, 

the long-tailed distributions and the sub-exponential distributions (Jacob et al. 2011b, Jacob et al. 2009d). In SPSS
 

all commonly used heavy-tailed distributions are classified as the sub-exponential (www.spss.com). Although there 

is still some discrepancy over the classification of the term heavy-tailed, seasonal forecasted  malaria-related risk 

model residual forecast error distributions, SPSS can accurately target explanatory  hyperendemic transmission 

covariate coefficients based on regressed seasonally-sampled district –level sampled field/clinical/remote sampled 

measurement values
 
 .  

Importantly, in SPSS autoregressive algorithms are often employed when regressing the conditional mean of a 

geopredictive malarial risk based model since these processes are considered causal at each georefernced district-

level sample point in time. In these algorithms the error terms  are generally assumed to be i.i.d. sampled from a 

normal distribution with zero mean: ~ N(0,ζ
2
) where ζ

2
 is the variance. These assumptions may be weakened but, 

doing so will change the properties in any geopredictive district-level malarial risk model residual forecasts.  

In some texts predictive district-level malarial risk models can be specified in terms of the lag operator L.  In time 

series analysis, the lag operator or backshift operator then would run on an element of a time series to produce the 

previous element. For instance,  given some time series empirical sampled dataset of field and remote sampled 

district level malarial-related hyperendemic transmission oriented  parameter estimators in SPSS [e.g. x={x
1
,x

2
 

…x
n
], then  for all t>1 or, equivalently for all  where L is the lag operator. 

Note, that the lag operator can be raised to arbitrary integer powers so that .As such, then in the 

SPSS derived predictive malaria-related AR(p) risk model would be given 

by where  represents the polynomial The MA(q) 

portion of the model would then be given by where θ represents the 

polynomial Finally, the combined ARMA(p, q) time series predictive district-level 

malaria-related regression-based risk model would be given by or more 

concisely, or   

Additionally, tests constructed in a seasonal SPSS-derived ARMA (p, q) time series geopredictive district-level 

malaria-related risk model context can reveal specific properties of the sampled field/clinical/remote sampled 

hyperendemic transmission oriented parameter uncertainty estimators. For example, in a spatiotemporal district-
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level geopredictive  malaria-related model regression-based  framework, Qk could be approximately distributed as a 

chi-square distribution with k-m degrees of freedom, where m is the number of sampled  hyperendemic transmission 

oriented parameter estimators  employed in fitting the model, excluding any constant term or  other variables (i.e. 

including just the p,d,q triples). The district-level geopredictive malarial-related Ljung–Box test, for example, then 

could be defined as follows: H0: the seasonal-sampled field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented data attributes are independently distributed (i.e. the correlations in the sampled district-level 

population from which the sample is taken are 0), so that any observed correlations in the sampled data result from 

randomness of the sampling process; and, Ha: the data is not independently distributed. In SPSS the test statistic for 

testing such a hypotheses would be  where n is the district-level sample size,  is the 

sample autocorrelation at lag k, and h is the number of lags being tested. For significance level α, the critical region 

for rejection of the hypothesis of randomness in  the  geopredictive time series seasonal district-level SPSS derived 

malarial-related uncertainty model would then be  when is the α-quintile of the chi-

squared distribution with h degrees of freedom.  

In probability and statistics, the quantile function, (also called percent point function or inverse cumulative 

distribution function) of the probability distribution of a random variable specifies, for a given probability, the value 

which the random variable will be at, or below, with that probability (Hosmer and Lemeshew 2000). The quantile 

function is one way of prescribing a probability distribution in a robust  geopredictive district-level regression-based 

malaria-related risk  hyperendemic transmission oriented model and it is an alternative to the probability density 

function (pdf) or probability mass function (pmf), the cumulative distribution function (cdf) and the characteristic 

function ( see Jacob et al. 2009d). The quantile function, Q, of a probability distribution is the inverse of its 

cumulative distribution function F.(Cressie 1993). 

Interestingly, the derivative of the quantile function in a geopredictive seasonal district-level malarial risk model in 

SPSS would be the quantile density function for prescribing a probability distribution. This function in the risk 

model would then be the reciprocal of the pdf composed with the quantile function. Assuming a continuous and 

strictly monotonic distribution function in a time series predictive district-level malaria-related model, , 

the quantile function then in the derivative would return the value below which the random draws from the given  

district-level distribution which  would fall  p×100 percent of the time. That is, the derivative of the quantile funtion 

in SPSS would return the  sampled hyperendemic transmission oriented covariate coefficient measurement value of 

x such that  If the probability distribution is discrete rather than continuous in the 

risk model derivatives then there may be gaps between the sampled empirical dataset of malaria-related explanatory 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented covariate coefficient 

measurement values in the domain of its cumulative distribution function (cdf). The cdf of a real-valued random 

variable X is the function givenby where the right-hand side represents the probability 

that the random variable X takes on a value less than or equal to x. The probability that X lies in the semi-closed 

interval (a, b], where a  <  b, is therefore (Hosmer and Lemeshew 

2000.  

However if the cdf is only weakly monotonic there may be "flat spots" in its range. In either case, the quantile 

function would be   for a probability 0 < p < 1  and the quantile 

function would return the minimum value of x for which the previous probability statement holds in the risk model 

geopredictive residual forecasts. For instance, the quantile function for Exponential (λ) (i.e. intensity λ and expected 

value 1/λ) in a predictive district-level malaria-related risk model may be  for 0 ≤ p < 1. The 

quartiles would therefore be represented as first quartile  median   third quartile  

 Subsequently, a non-linear ordinary differential time series   district level malarial-related 

geopredictive  regression-based equation for the normal quantile, w(p), may be then given as 
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with the center (boundary) conditions  ] By so doing, 

the non-linear ordinary differential equation could also be given for normal distribution  in a robust geopredictive 

seasonal district-level malaria-related risk model employing any quantile function whose second derivative exists. In 

general the equation for a quantile, Q(p), may be given as  (see Cressie 1993)which may be 

augmented by suitable boundary conditions, in some district-level malarial risk modeling circumstances 

where and ƒ(x) is the pdf. The forms of this time series equation, and its classical analysis 

by series and asymptotic solutions, for the cases of the normal, Student, gamma and beta distributions has been 

elucidated by Steinbrecher and Shaw (2008). Such solutions may provide accurate benchmarks, and in the case of 

the Student, suitable series for live Monte Carlo use for regressing district-level seasonal explanatory district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented covariate coefficients.  

Additionally, employing the ARIMA geopredictive district-level malaria-related uncertainty regression model 

output, simulated unconditional disturbances for the field/clinical/remote sampled hyperendemic transmission 

oriented geopredictive autoregressive regressors can be obtained. For instance, suppose a malarialogist/experimenter 

considers simulating N responses from a regression –based geopredictive malarial-related district-level risk model 

with ARMA(2,1) errors: where εt is Gaussian with mean 0 and 

variance ζ
2
. Given presample unconditional disturbances (u0 and u–1) and innovations (ε0), N independent 

innovations from the Gaussian distribution: will be generated in SPSS. Thereafter, by filtering the 

innovations recursively the unconditional disturbances [e.g. b) 

c) d) ] can be 

derived from any empirical sampled  dataset of predictive district-level malaria-related  explantory hyperendemic 

trasnmission oriented covariate coefficients. Therefater, a malarialogist/experimenter could obtain simulated 

responses employing the unconditional disturbances, regression model, and the other sampled malaria-related 

exploratory district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented 

geopredictive autoregressive predictors: ,if so desired. 

Interestingly, in SPSS the simulation test would be applied to the residuals of a fitted district-level geopredictive 

malaria-related explanatory hyperendemic transmission oriented ARIMA model, not the original series. As such, the 

hypothesis actually being tested when constructing a robust SPSS time series  risk model would be the level of 

uncertainty error coefficients in the residually forecasted district-level field/clinical/remote sampled hyperendemic 

transmission oriented predictive autoregressive estimates. The model components would then be actually be based 

on whether the residuals from the ARIMA model contain uncertainty coefficients (e.g.,latent autocorrelation). 

Fortunately, when testing ARIMA models, no adjustment to the test statistic or to the critical region of the test are 

made in relation to the structure of the ARIMA error model.  

By so doing, at lag k in the ARIMA SPSS derived district-level hyperendemic transmission oriented robust 

geopredictive malaria-related risk model, the Box-Ljung statistic could be defined by Qk=n (n+2) kΣl=1r2ln−l. As 

such, when n is large, Qi would have a chi-square distribution with degrees of freedom k−p−q, in the residual 

forecasts for precision targeting the significant district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented predictive explanatory covariate coefficients when p and q are autoregressive 

and moving average orders, respectively. The significance level of Qi could then be calculated from the chi-square 

distribution with k−p−q degrees of freedom. If the measure is statistically significant in the regressed georeferenced 

empirical  district-level empirical  sampled dataset, it would then indicate that the residuals forecasts targeting the 

highly significant hyperendemic transmission oriented explanatory covariate coefficients still contain significant  

latent  unobserved autocorrelation uncertainty coefficients  after the model has been fitted. This then would suggest 

that an improved model should be sought.  
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 In statistics, OLS or linear least squares is a method for estimating the unknown parameters in a linear regression 

model (Rao 1973). In SPSS the estimated district-level predictive malaria-related time series regression-based 

equation would be Y = ß0 + ß1X1 + ß2X2 + ß3D + ê where the ßs would be the OLS estimates of the Bs(www-

01.ibm.com/software/analytics/spss/). The residual, ê, would then be the difference between the actual Y and the 

predicted Y and would thus possess a zero mean in the risk model. In other words, OLS would be able to calculate 

the slope coefficients in an empirical regressed dataset of sampled district-level explanatory hyperendemic 

transmission oriented covariate coefficients so that the difference between the forecasted Y and the actual Y could 

be minimized. OLS minimizes the sum of the squared residuals OLS minimizes SUM ê
2
(Hosmer and Lemeshew 

2000).  

Routinely, the residual forecasts rendered from the seasonal geopredictive malarial-related district-level regression-

based risk model would then be squared in order to compare negative errors to positive errors more efficiently in the 

regressed hyperendemic transmission oriented derivatives. The OLS estimates of the ßs in the seasonal district-level 

SPSS model would be unbiased –(e.g.,  the ßs are centered around the true sample population values of the Bs). 

Further, the residual forecasts would display minimum variance whereby, the distributions of the ß malarial-related 

district-level hyperendemic transmission oriented sampled estimates around the true Bs would be spatially 

configured as tight as possible. This model would be consistent - as the sample size (n) approaches infinity and the 

estimated ßs would converge on the true Bs. As such, the rendered residual district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented predictive autoregressive forecasts would be normally 

distributed since the statistical tests would be based on a district-level simulated normal distribution.  

Interestingly, statistical computing packages in SPSS routinely print out the estimated ßs when estimating a 

regression equation (e.g. ols1.t). As such, OLS could be employed to minimize the sum of the squared residuals in a 

robust geopredictive district-level risk uncertainty specified malarial risk model. By so doing, OLS could calculate 

the slope coefficients so that the difference between the predicted Y and the actual Y being minimized in the 

geopredictive district-level risk model error specification would subsequently provide a "best" fit for the sampled 

data points. Here the "best" may be understood, as the optimal risk model for minimizing the sum of squared 

residuals of the linear regression model. By so doing, α (the y-intercept) and β (the slope) would be efficiently 

quantitated in the empirical regressed geosampled district-level malaria- related explanatory hyperendemic 

transmission oriented covariate coefficient measurement values .  

Thereafter, by  employing calculus, the geometry of inner product spaces  in a geopredictive time series district-level 

malarial risk model could even be further  quantitated, if so desired, by simply expanding the model to attain  a 

quadratic in α and β,  as in Jacob et al. (2013c). By so doing, the sampled values of α and β in the risk model would 

then be able to minimize the objective function when rxy is the sample correlation coefficient between x and y, sx is 

the standard deviation of x, and sy is correspondingly the standard deviation of y. For instance, if the seasonal SPSS 

constructed geopredictive malaria-related district-level risk model is described using    , 

then substituting the above expressions for  and  into would yield   

Fortunately, since ARIMA uncertainty models include only AR terms they can be fitted by OLS.  

Further, the quantitatively regressed seasonal district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented geopredictive autoregressive data attributes may be squared in in SPSS in order 

to compare the negative errors to positive errors more proficiently. Optimally, as previously mentioned, the OLS 

estimates of the ßs in the residual forecasts would be unbiased – (e.g., the ßs centered around the true sampled 

district-level malarial-related population values) and would have minimum variance. By so doing, the SPSS
 
OLS 

malarial model derivatives would minimize the sum of squared vertical distances between the georeferenced district-

level predictive observed responses in any regressed empirical-sampled dataset and their responses for seasonal 

approximation of unbiased exploratory hyperendemic transmission oriented predictors (e.g., prolific larval habitat 

based on field sampled density count data) and their geolocations.  
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Importantly, the SPSS
 
OLS estimator is consistent when  regressors are exogenous and there is no perfect 

multicollinearity, and optimal in the class of linear unbiased estimators when the errors are homoscedastic and 

serially uncorrelated. Under these conditions, the method of OLS would provide minimum-variance mean-unbiased 

residual forecast error decomposition and estimation for any regressed empirical sampled dataset of geopredictive 

malarial-related district-level explanatory hyperendemic transmission –transmission-oriented covariate as the errors 

would have finite variances in the risk model outputs. Additionally, under the additional assumption that the error 

terms be normally distributed, the OLS would be the maximum likelihood estimator (MLE) in the residual forecasts 

targeting the -level field/clinical/remote sampled geopredictive covariate coefficients. In statistics, MLE is a method 

of estimating the uncertainty-related parameters of a statistical model assuming that the heights are normally (i.e., 

Gaussian) distributed with some unknown mean and variance(see Hosmer and Lemeshew 2000). 

As such, SPSS  can be used to regress  the number of malaria cases in neighboring districts at an epidemiological 

study site  using specific explanatory  district-level field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented geopredictive autoregressive explanatory covariates (e.g. weekly rainfall) for forecasting 

selected seasonal predictive ARIMA model outputs. For example, Zhu et al. (2007) constructed a geopredictive 

ARIMA model based on the monthly malaria incidence of Huaiyuan and Tongbai counties in Huaihe River Valley, 

China from January 1998 to December 2005 in SPSS 13.0 software. Akaike's information criterion and BIC were 

then employed to confirm the fitness of the model. Thereafter, the SPSS derived ARIMA-related geopredictive 

district-level malarial-related risk model was employed to predict the monthly malaria incidence in 2006 using the 

linear residual forecasts. The data was then compared with the actual incidence so as to evaluate the model's 

geopredictive power. Malaria incidence of 2007 was correctly forecasted by the ARIMA-related model based on 

malaria incidence from 1998 to 2006. The results indicated that statistics assisted estimation of the significance of 

the fitted autoregressive and seasonal moving average coefficients were unbiased (i.e., AR1=0.512, SMA1=0.609, 

P<0.01). An ARIMA model, with AIC=67.01, BIC= 71.87 and white noise exactly fitted the incidence of the 

previous monthly incidence rates from January 1998 to December 2005. Additionally, the predicted residual 

variance revealed that district-level malarial monthly incidence rates in 2006 were consistent with the actual 

incidence rates. Malaria incidence of 2007 was 106.50/100, 000, with a peak incidence during July and October. 

Thus, the spatiotemporal SPSS constructed ARIMA model was an appropriate model to fit exactly the changes of 

seasonal malaria incidence rates and to forecast incidence trends with a high precision based on the short term time-

series.  

Unfortunately, Expert Modeler from ARIMA in SPSS  13, 14 and 15 have found that Trends Version 14 render 

different results for point predictions and upper and lower confidence limits for output values when employing the 

ARIMA stand-alone command when compared to employing the ARMIA option under the Expert Modeler (i.e., 

TSMODEL). Thus, if the exact same ARIMA-related geopredictive district-level malarial specification found by the 

Expert Modeler were repeatedly run in ARIMA employing the sampled district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented geopredictive autoregressive data from the  Huaihe River 

Valley epidemiological study sites, the point estimates and the upper and lower confidence limits would differ. In 

particular, under the Expert Modeler, the geopredictive intervals would be substantially narrower and the differences 

with the ARIMA stand alone command would increase as the forecast horizon lengthens. Even though over the 

estimation period, the two commands may yield results from the geopredictive autoregressive seasonal trend 

district–level malarial model residual forecasts, they would not be identical. Disastrously, since the Expert Modeler 

and ARIMA uses different algorithms for choosing the starting values for the geopredictions in time series, the 

forecasting context may begin to diverge rendering misspecifications in the district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented geopredictive autoregressive outputs. Although , the 

narrower predictive intervals found may be evidence of the superiority of its implementation over the older ARIMA 

procedure, the newer SPSS TSMODEL commands, such EXSMOOTH, may not provide sufficient functionality for  

generating robust residual forecasts from a predictive seasonal district-level malaria-related hyperendemic 

transmission oriented  regression based  risk model.  

Further, although SPSS
 
has a nice routine in their regression models (e.g., logistic) for estimating and validating 

district-level geopredictive seasonal malaria-related time series explanatory hyperendemic transmission oriented 

covariate coefficient interactions, it is only a trivial advantage since  the software‘s useful multivariate error analysis 

procedures are limited to logit models. The logit function is the inverse of the sigmoidal "logistic" function used in 
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mathematics, especially in regression-based statistics(Rao 1973). The sigmoid function, also called the sigmoidal 

curve or logistic function, is the function which has as a derivative 

= = =  with an indefinite integral = =  (see 

von Seggern 2007). Log-odds and logit are synonyms (Cressie 1993). Although the logit of a number p between 0 

and 1 can be given by the formula  , it would be the base of the 

logarithm function employed in  a district-level geopredictive seasonal malaria-related regression based risk model 

would be of little importance since the forecast coefficients would be greater than 1.  

Currently the natural logarithm with base e is the one most often employed in geopredictive district-level malarial 

risk modeling. The "logistic" function of any seasonal-sampled empirical dataset of district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive autoregressive 

explanatory  covariate coefficient  measurement values then  in  an SPSS
 
constructed model would  be  which 

could be  given by the inverse-logit: ( see Cramer 2003). Thus, if p is 

a probability in a robust predictive district-level malaria-related risk model, then p/ (1 − p) would be the 

corresponding odds in the residual forecasts targeting the seasonal explanatory hyperendemic transmission-oriented 

covariate coefficients  by their respected significance levels where the logit of the probability would be the 

logarithm of the odds in the model. Similarly, the difference between the logits of two probabilities in the residual 

forecasts  in the SPSS
 
constructed model would be  the logarithm of the odds ratio (R);thereby, providing a 

shorthand for writing the correct combination of odds ratios  simply by adding and/or subtracting 

 (see Cressie 1993). The 

logit in logistic regression –based seasonal  district-level predictive malaria-related district-level  uncertainty risk  

model then would  be a special case of a link function in a generalized linear model (GLM) which, in turn, would be  

the canonical link function for a binomial distribution. The logit function is the negative of the derivative of the 

binary entropy function (Hosmer and Lemeshew 2000). In information theory, the binary entropy function, denoted 

or , is defined as the entropy of a Bernoulli process with probability of success p (see Hosmer and 

Lemeshew 2000).  

Theoretically, in SPSS,
 
the Bernoulli trial may be modeled geomathematically, in any malaria-related regression-

based analyses as a seasonal sampled district-level field/clinical/remote sampled explanatory hyperendemic 

transmission oriented autoregressive random variable X Geomathematics or mathematical geosciences is the 

application of mathematics to the geosciences which commonly employs computer based technology and which is a 

form of geophysics (Freeden,et al. 2010). This variable, however, can take on only two sampled explanatory district-

level field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive autoregressive 

estimator values: 0 and 1. In such circumstances when   the malaria-related district-level risk model residual 

forecasts would be considered a success and the event  would be considered a failure. These two events would 

then be mutually exclusive and exhaustive however, if  then and 

the entropy of X is provided by  where 

  would be taken to be 0 (see Cramer 2003).  The logarithms in this formula in SPSS
 
would thereafter be 

taken to the base 2 in the risk model residual forecasts  (i.e., binary logarithm).When the binary entropy 

function in the malaria-related hyperendemic transmission oriented geopredictive autoregressive malaria-related risk  

model  would then attain its maximum value in the  residual error uncertainty estimation. Unfortunately, SPSS
  
 

cannot  distinguish the appropriate function in time series by its argument and, as such, the statistical package will 

confuse functions in  the   latent geopredictive  district-level malaria-related risk model output with the analogous 
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function related to Rényi entropy, so would not be able to dispel error-prone ambiguous terms in the 

forecasted explanatory hyperendemic transmission oriented  uncertainty covariate coefficients.  

The Rényi entropy is important in ecology and geostatistics as indices of diversity. The Rényi entropy can provide 

important quantum information, which can be used as a measure of uncertainty entanglement for parsimoniously 

constructing a robust seasonal geopredictive time series district-level malaria-related model with robust interpolated 

residual forecasts ( see Jacob et al. 2013b). For example, in the Heisenberg XY spin chain model commonly 

generated in SPSS, the Rényi entropy is a function of α  which can be calculated explicitly by virtue of the fact that 

it is an automorphic function with respect to a particular subgroup of the modular group. In theoretical computer 

science, the min-entropy is used in the context of randomness extractors (Cressie 1993). 

Unfortunately, an SPSS
 
logit model employed for quantitating district-level time series geosampled malaria-related 

explanatory hyperendemic transmission oriented covariate coefficients and its entropy would generate mispecified 

residual uncertainty forecast estimates.  However, if a malarialogist/experimenter  regresses an empirical dataset in 

SPSS using multiple district-level hyperendemic transmission-oriented georeferenced explanatory  covariate 

coefficients, a linear geopredictive seasonal regression-based malarial  model(i.e.,  ) can be 

constructed instead where X is the design matrix and β is a k × 1 column vector of the seasonal-sampled  parameters  

to be estimated. By so doing, a model estimator for Renyi‘s quadratic entropy can be developed using kernel density 

estimation (KDE). 

The KDE s a non-parametric way to estimate the probability density function of a random variable. Kernel density 

estimation is a fundamental data smoothing problem where inferences about the population are made, based on a 

finite data sample. By letting  (x1, x2, …, xn) be an i.i.d. sample drawn from some distribution (e.g., regressed 

empirical dataset of district-level malaria-related hyperendemic transmission oriented explanatory covariate 

coefficients) with an unknown density ƒ,  the shape of this function ƒ can be easily estimated employing 

where K(•) is the kernel — a symmetric but not necessarily 

positive function that integrates to one — and h > 0 is a smoothing parameter called the bandwidth. A kernel with 

subscript h is called the scaled kernel and defined as Kh(x) = 1/h K(x/h)(Cressie 1993). Intuitively if a 

malarialogist/experimenter wants to choose h as small as the sampled district-level field/clinical/remote sampled 

hyperendemic transmission oriented geopredictive autoregressive data allows, there will be a trade-off between the 

bias of the estimator and its variance in the risk model. A range of kernel functions are commonly used for 

geopredictive malarial risk modeling including: uniform, triangular, biweight, triweight, Epanechnikov, normal, and 

others ( see Jacob et al. 2009d). The Epanechnikov kernel derived commonly from 

 ,for instance, is optimal in a minimum variance sense for district-level risk 

modeling although   the normal kernel is often used [i.e., K(x) = ϕ(x)], where ϕ is the standard normal density 

function. The construction of a kernel density estimate finds interpretations in fields outside of density estimation 

(Cressie 1993). For instance, in thermodynamics, this is equivalent to the amount of heat generated when heat 

kernels (e.g., the fundamental solution to the heat equation) are placed at each data point locations xi. Similar 

methods are used to construct discrete Laplace operators on point clouds for manifold learning. 

 With cost functions for adaptation in mind, the properties of this Information Potential (IP) estimator can then 

be carefully presented in a robust geopredictive time series district-level malaria-related hyperendemic transmission 

oriented model by including its bias and variance in the residual forecasts. The Rényi entropy of order , where 

and , can then be  defined as  (see Hosmer and Lemeshew 2000). Here, 

is a discrete random variable with possible outcomes and corresponding probabilities 

for , and the logarithm is base 2. If the probabilities are for all 

, then all the Rényi entropies of the distribution in a robust geopredictive district-level malaria-
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related risk model would be equal: . In general, for all discrete random variables , 

is a non-increasing function in .(Cressie 1993) Applications often exploit the following relation between 

the Rényi entropy and the p-norm: (Griffth 2003). In such circumstances, the 

discrete probability distribution  in a robust geopredictive malaria-related hyperendemic trasnmission oriented 

risk model may be interpreted as a vector in with and . 

Further, based on the Nystrom approximation and the primal-dual formulation of Least Squares Support Vector 

Machines (LS-SVM), it becomes possible to apply a nonlinear geopredictive district-level malaria-related 

hyperendemic transmission oriented risk model to a large scale regression problem. Least squares support vector 

machines are least squares versions of support vector machines (SVM), which are a set of related supervised 

learning methods that analyze data and recognize patterns, and which are used for classification and regression 

analysis. The Nystrom method is an efficient technique for the eigenvalue decomposition of large kernel matrices 

(Rao 1973) In machine learning for example, eigenvalue decomposition is used in kernel principal component 

analysis and kernel Fisher discriminant analysis for the extraction of nonlinear structures and decision boundaries 

from the kernel matrix. The eigenvectors of the kernel or affinity matrix are also used in many spectral clustering 

(von Luxburg, 2007) and manifold learning algorithms (Belkin and Niyogi, 2002; Tenenbaum et al., 2000) for the 

discovery of the intrinsic clustering structure or low-dimensional manifolds. In this version a 

malarialogist/experimenter would devise the a solution for constructing an autoregressive geopredictive district-level 

malaria-related hyperendemic transmission oriented risk model by solving a set of linear equations instead of a 

convex quadratic programming (QP) problem for classical SVMs. Least squares SVM classifiers, were proposed by 

Suykens and Vandewalle (1999). LS-SVMs are a class of kernel-based learning methods. In numerical analysis, the 

Nyström method of discretizing an integral equation uses a quadrature rule; (i.e. applying the quadrature 

rule to, for instance , the inhomogeneous Fredholm equation of the second 

kind results in  (see Leonard and 

Walsh 1974).   

An inhomogeneous Fredholm equation of the first kind is written as: in SPSS 

and the problem is, given the continuous kernel function K(t,s), and the function g(t), to find the function f(s).If the 

kernel is a function only of the difference of its arguments, in a geopredictive district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented autoregressive model namely 

, the limits of integration would be  , and, as such, the regression based  equation 

can be rewritten as a convolution of the functions K and f . By so doing, a solution can be derived  

by where and are the direct and inverse 

Fourier transforms respectively. An inhomogeneous Fredholm equation of the second kind can also be given for an 

SPSS derived risk model as Given the kernel K(t,s), and the function 

, the problem is typically to find the function (Cressie 1993).  

Interestingly, a standard approach to solving this in a time series dataset of district-level SPSS derived 

malaria-related explanatory hyperendemic transmission oriented covariate coefficients may be to use the resolvent 
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formalism. Written as a series, the solution in these types of foramlisms are known as the Liouville-Neumann. The 

Liouville–Neumann series is defined as which is a unique, continuous solution of a 

Fredholm integral equation of the second kind:  (Hosmer and Lemeshew 

2000). If the nth iterated kernel is then defined in a predictive malaria-related district-level hyperendemic 

transmission oriented risk model 

as  where 

the  and  The resolvent or solving kernel may then be given 

by The solution of the integral equation thereafter will be 

 This computation can be performed in SPSS  using a sparse 

approximation of the non-linear oriented mapping data attributes  induced by the kernel matrix, within an active 

selection of support vectors based on quadratic Renyi entropy criteria. SPSS-Macros supports kernel density 

estimation (http://www01.ibm.com/software/analytics/spss). 

By so doing, the OLS estimator .in SPSS could be employed for determining optimal 

the statistically significant hyperendemic oriented district-level geopredictive malaria-related residual error  

estimators. For instance, if  sample errors from the time series malarial risk model  have equal variance ζ
2
 and are 

uncorrelated, the least-squares estimate of β  would be the best linear  unbiased district-level field/clinical/remote 

sampled geopredictive error estimates and its variance could be  quantitated 

with  where  would be the  regression residuals regardless of the 

Rényi entropy. Unfortunately, assumptions of are easily violated in SPSS; thus, the OLS estimator 

would lose its desirable properties for targeting the district-level georeferenced seasonal time series explanatory 

hyperendemic transmission oriented uncertainty covariate coefficients. Indeed, 

where  in an autoregressive geopredictive malaria-

related district-level risk model (see Jacob et al. 2009d). Therefore, while the SPSS derived OLS point forecasted 

district-level seasonal sampled malaria-related hyperendemic transmission oriented parameter estimators would 

remain unbiased; it would not be optimal in the sense of having minimum mean square error. Further, the SPSS 

derived OLS variance estimator would not provide a consistent estimate of the variance of the 

residual uncertainty based on of the OLS estimates in the district-level risk model outputs.  

Importantly, SPSS lags are more geomathematical rather than statistical for modern data district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive autoregressive 

uncertainty risk based analysis. For example, bootstrapping approaches are non-existent in SPSS for seasonal 

district-level malaria-related risk forecasting. Basic tests of analytical assumptions for efficient geopredictive risk 

model construction (e.g., assumptions of independence of malarial indicators) are often not available. SPSS
 
menu 

offerings for seasonal geopredictive risk modeling are typically the most basic of any standard regression analysis. 

Additionally, the default graphics are poor and not easily customizable for autoregressive parsimonious district-level 

malarial risk model construction. However, the major disadvantage for generating unbiased residual forecasts from 

regressed empirical datasets of district sampled malaria-related time series georeferenced explanatory hyperendemic 

transmission oriented covariates in SPSS, is that it does not have an undo option when a variable is deleted in the 

regression weighted error matrix. Therefore, suppose the empirical-sampled data consists of n sampled quantitated 

district-level malaria-related hyperendemic transmission oriented observations using yi, xi} Ni=1, where each 
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sampled field/clinical/remote observation in SPSS would include a scalar response yi and a vector of p 

(i.e.predictors) or repressors (i.e.xi.) In a linear-based robust predictive time series regression based risk model the 

response variable would then be a linear function of the regressors: where β is a p×1 vector of 

unknown  hyperendemic transmission oriented parameter estimators  and εi's would be the unobserved scalar 

random variables (i.e., errors). This SPSS
 
derived seasonal district-level malaria-related uncertainty risk model 

would not be able to account for the discrepancy between the actually observed responses yi and the "geopredicted 

risk outcomes" x′iβ. This procedure would also not be able to denote the matrix transpose in SPSS so that x′ β is the 

dot product between the vectors x and β. 

 In linear algebra, the transpose of a matrix A is another matrix A
T
 (also written A′, A

tr
,
t
A or A

t
) (Cressie 

1993).Thus, formally, the i th row, j th column element of A
T
 for any robust seasonal predictive SPSS derived 

district-level malaria-related  risk model would be the j th row, i th column element of A when  and A 

is an m × n matrix and when A
T
 is an n × m matrix. Although this model can also be written in matrix notation in 

SPSS as where y and ε are n×1 vectors, and X is an n×p matrix of regressors, (i.e., design matrix) 

which may provide statistical significance of any regressed explanatory hyperendemic transmission oriented 

covariate coefficient in a geopredictive autoregressive district-level malaria-related risk model, the specifications 

would be erroneous .  

It is important to remember, in statistics, a design matrix is a matrix of  variables, often denoted by X, that is used in 

certain statistical models [e.g., the general linearized model] which  can contain indicator variables (i.e, ones and 

zeros) that indicate group membership in an ANOVA, or it can contain values of continuous variables. Thus, as a 

rule, the constant term is always included in an empirical georeferenced datasets of malarial-related hyperendemic 

transmission oriented regressors X, by taking xi1 = 1 for all i = 1, …, n( see Jacob et al. 2009d). By so doing, the 

coefficient β1 corresponding to this regressor in a SPSS constructed model then would  be the intercept identifying 

and quantitating the  explanatory hyperendemic transmission-oriented covariate coefficients for accurately 

determining statistical significance levels in the residually forecasted district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented geopredictive autoregressive estimators. But there may be some 

inconspicuous latent unaccounted relationships between the regressors in the forecasts that may still remain 

residually unquantitated in the risk model in SPSS. For instance, the third district-level malarial regressor may be the 

square of the second regressor in the risk model outputs. In this case SPSS
 
would render a quadratic model in the 

second regressor assuming that the first regressor is constant in the model.  Disadvantages of quadratic and higher-

order polynomials are: 1) they may require more reference standards to capture the region of curvature, 2) the 

correction for bias is more complicated than for the linear model; and, 3) the uncertainty analysis is difficult (Homer 

and Lemeshew 2000).  

Additionally, SPSS does not have any multiple pooled cross-sectional time series routines for adequately 

categorizing regressed seasonal-sampled district-level field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented predictive autoregressive estimates. A database that provides a multivariate statistical history 

for each of a number of individual entities is called a pooled cross-sectional and time series data base in literature 

(Rao 1973).Further, since there are no count procedures (e.g., Poisson, negative binomial and the zero routines) in 

SPSS, other MLEs such as Tobit, multinomial logit, ordinal or probit, and complementary log-log models would not 

be readily available for district-level predictive malarial related risk modeling for quantitating seasonal sampled 

field/clinical/remote sampled geopredictive autoregressive explanatory  hyperendemic transmission oriented 

covariate coefficient significance levels. Commonly specifications for determining conspicuous latent 

autocorrelation error coefficients in empirical datasets of seasonal sampled malarial-related  explanatory 

hyperendemic transmission oriented covariate coefficients variables, a Poisson specification with a non-homogenous 

gamma distributed mean is required (see Jacob et al. 2005b), which unfortunately is not currently available in SPSS.  

Also in SPSS no correction for heteroskedascity (e.g., Huber-White) are included. Thus, for example, suppose there 

is a sequence of seasonal-sampled district-level malaria-related hyperendemic transmission oriented random 

variables [e.g., {YT} t=1
n
] in an empirical dataset with a sequence of vectors of random variables, {Xt} t=1

n
. In dealing 

with conditional expectations of Yt given Xt, the sequence {Yt}t=1
n
  in the residual forecasted parameter estimators, 

identifying the statistically important seasonal district-level field/clinical/remote sampled malaria-related 

autoregressive hyperendemic transmission-oriented covariate coefficients would then lead to heteroskedastic 
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parameters as the conditional variance of Yt given Xt would change with t. Some authors refer to this as conditional 

heteroscedasticity to emphasize the fact that it is the sequence of conditional variances that changes and not the 

unconditional variance. In fact it is possible to observe conditional heteroscedasticity in an ecological  empirical 

regressed dataset of seasonal district-level geopredictive malaria-related  hyperendemic transmission oriented 

explanatory covariate coefficients  even when dealing with a sequence of unconditional homoscedastic random 

variables, however, the opposite does not hold.  Heteroskedastic parameters would not cause the seasonal malaria-

related district-level OLS coefficient estimates to be biased, although they would cause OLS estimates of the 

variance and, thus, standard errors of the coefficients to be error prone, possibly above or below the true or sampled 

population variance. Thus, seasonal regression analysis of empirical sampled hyperendemic transmission-oriented 

observational geopredictive variables would render unbiased estimates when quantitating the relationship between 

the seasonal-sampled variables and the outcome in the district-level risk model. Biased standard errors lead to biased 

inference, so results of hypothesis tests are possibly wrong (Hosmer and Lemeshew 2000).  

As a consequence of biased standard  error estimation,  if heteroscedasticity is present in a SPSS constructed 

predictive district-level ARIMA risk model output, a malarialogist/experimenter might find compelling results 

against the rejection of a null hypothesis at a given field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented geopredictive autoregressive covariate coefficient significance level which may be interpreted 

as significant, when that null hypothesis is actually uncharacteristic of the actual seasonal  sampled regressed 

covariate coefficients (i.e., make a type II error). In ARIMA modeling in SPSS, as in any statistical software 

packages, the selection of a best model fit as associated to historical data is directly related to whether residual 

analysis is performed well. Diagnostic checks including the independence, normality and homoscedasticity of 

residuals is the most important stage of a time series district-level malarial-related autoregressive geopredictive 

model building process (Jacob et al. 2005b). 

Under certain assumptions, however, the SPSS derived OLS estimator in a geopredictive  district-level 

hyperendemic transmission oriented malaria-related risk model  would have a normal asymptotic distribution when 

properly normalized and centered even when the time series data does not come from a normal distribution. This 

result would then justify using a normal distribution, or a chi square distribution depending on how the test statistic  

in  the geopredictive district-level malarial risk model is calculated for conducting the  hypothesis test. This would 

hold even under heteroscedasticity in the residually forecasted district-level field/clinical/remote sampled malaria-

related hyperendemic transmission oriented predictive estimates. More precisely, the SPSS OLS estimator in the 

presence of heteroscedasticity would be asymptotically normal, when properly centered with a variance-covariance 

matrix that differs from the case of homoscedasticity in a seasonal district-level malaria-related geopredictive risk 

model. Unfortunately, since SPSS
 
does not offer any resolution for heteroskedastic parameters specified in 

residually forecasted uncertainty estimators for accurately identifying optimal unbiased hyperendemic transmission 

oriented explanatory covariate coefficients. As such   unqunatitated heteroskedastic parameters would be a major 

practical issue encountered in ANOVA inferences generated from regressed seasonal district-level malarial based 

risk model field and remote sampled data attributes. 

ANOVA is a particular form of statistical hypothesis testing heavily used in the analysis of experimental district-

level malarial risk-based data analyses. A geopredictive malarial related regression test result, similar to any other 

statistical test (e.g., calculated from the null hypothesis and a district-level sample) is significant if it is deemed 

unlikely to have occurred by chance, assuming the truth of the null hypothesis (see Jacob et al. 2005b). Thus, a 

statistically significant result (e.g., probability (i.e.,p-value) rendered from a district-level seasonal sampled risk 

based malaria-related geopredictive regression-based risk analyses is less than a threshold (i.e., significance level) 

that would subsequently justify the rejection of the null hypothesis. In the typical application of ANOVA for 

seasonal district-level malaria-related autoregressive geopredictive risk modeling, the null hypothesis is that all 

groups are simply random samples of the same seasonal-sampled population ( see Hosmer and Lemeshew 

2000).This implies that all explanatory district-level field/clinical/remote sampled hyperendemic transmission 

oriented geopredictive autoregressive covariate coefficient interaction effects in an empirical sampled district-level 

malaria-related dataset have the same effect. Rejecting the null hypothesis then implies that different regressed 

covariates results have altered sampled effects in the predictive malarial risk model output. 
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By construction, hypothesis testing limits the rate of Type I errors (i.e., false positives leading to false claims) to a 

significance level in a robust malaria-related geopredictive district-level hyperendemic transmission oriented risk 

model. Commonly, malarialogists and other experimenters wish to limit Type II errors (i.e., false negatives resulting 

in missed discoveries). The Type II error rate is a function of several things in a district-level malarial geopredictive 

risk model including sample size (i.e., positively correlated with experiment cost), significance level (e.g., when the 

standard of proof is high, the chances of overlooking a discovery are also high) and effect size ( e.g., when the effect 

is obvious to the casual observer, Type II error rates are low) (see Jacob et al. 2012b) The terminology of ANOVA 

is largely from the statistical design of experiments (Cressie 1993). The malarialogist/ experimenter thus would 

adjust factors and measures responses in the predictive risk model in an attempt to determine an effect (e.g.district-

level rainfall on prevalence rates). Routinely, factors in seasonal malaria related district-level geopredictive risk 

modeling are assigned to experimental units by a combination of randomization and blocking to ensure the validity 

of the results. Blinding keeps the weighing impartial (Cressie 1993). Responses in these models can show a 

variability that is partially the result of the effect and is partially random error.  

ANOVA is the synthesis of several ideas which is used for multiple purposes in district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented geopredictive autoregressive modeling. As a 

consequence, it is difficult to define concisely or precisely the role of ANOVA in geopredictive malarial risk 

modeling. For instance, in exploratory ANOVA data analysis, in malarial risk modeling, an organization of additive 

data decomposition can be conducted by the sums of squares which could indicate the variance of each component 

of the decomposition (or, equivalently, each set of terms of a linear model). By so doing, comparisons of mean 

squares, along with F-tests can allow testing of a nested sequence of geopredictive autoregressive district-level 

malarial model residual forecasts estimates. ANOVA is a linear model fit with coefficient estimates and standard 

errors (Cressie 1993). Thus, ANOVA can be a statistical tool used in several ways to develop and confirm an 

explanation for time series observed malarial-related district level hyperendemic transmission oriented data 

attributes.  

Additionally, the ANOVA model is computationally elegant and relatively robust against violations of its 

assumptions commonly observed in geopredictive district-level malarial risk models [e.g., linear correlated covariate 

coefficients]. ANOVA provides industrial strength (i.e., multiple sample comparison) statistical analysis (see 

Hosmer and Lemeshew 2000). ANOVA, however, is difficult to interpret particularly for complex seasonal 

geopredictive malarial-related field experiments, with split-plot designs being notorious. In statistics, restricted 

randomization occurs in the design of experiments and in particular in the context of randomized experiments and 

randomized controlled trials (Bailey 1987). Restricted randomization in geopredictive district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented autoregressive modeling would 

thus allow intuitively poor allocations of treatments to experimental units to be avoided, while retaining the 

theoretical benefits of randomization. In some cases the proper application of the method in a robust geopredictive 

malarial district-level risk model is best determined by problem pattern recognition followed by the consultation of a 

classic authoritative test. Fortunately, it has been adapted to the analysis of a variety of experimental designs in 

SPSS
.
   

For example, the One-Way ANOVA in SPSS procedure employs a one-way analysis of variance for vigorously 

regressing a quantitative seasonal sampled malarial –related district level dependent variable (total malarial 

mosquito Anopheles gambiae s.l.  aquatic larval habitat field sampled spatiotemporal density count data) by a single 

factor (independent) variable (e.g. daily humidity). Analysis of variance can then be used to test the hypothesis that 

several means are equal in the district-level geopredictive risk model. This technique would be an extension of the 

two-sample t test. In addition to determining that differences exists among the means in the sampled regressed 

hyperendemic transmission oriented data attributes, a malariologist /experimenter can determine which means differ 

in the empirical sampled dataset. There are two types of tests for comparing means in a geopredictive malarial risk 

modeling: a priori contrasts and post hoc tests (see Jacob et al.2000d). Contrasts are tests that can be set up before 

running the geopredictive malarial risk model experiment or, while post hoc tests are being conducted.  By so doing, 

a malariologist /experimenter may additionally test for trends in the empirical sampled district-level malarial-related 

hyperendemic transmission oriented model parameter estimators across multiple field-sampled categories. When 

only two groups need to be compared, the studentized range distribution is similar to the Student's t distribution, 

differing only in that it takes into account the number of means under consideration( Cressie 1993).  
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A statistical distribution published by Gosset in 1908., stated that given  independent measurements , and then 

letting  where is the population mean,  is the sample mean, and s is the estimator for population 

standard deviation (i.e., the sample variance) as defined by  then a Student's -distribution 

may be defined as the distribution of the random variable  which is the "best" that a malarialogist/experimenter  can 

do not knowing . The Student's -distribution with degrees of freedom is implemented in SPSS as 

StudentTDistribution[n]. If , and the distribution becomes the normal distribution the Student's -

distribution will also approach the normal distribution. The Student's -distribution can then be derived by 

transforming Student's z-distribution using  and then defining The resulting probability and 

cumulative distribution functions  would then be = = , 

= = =

where  is the number of degrees of freedom, , 

is the gamma function, is the beta function, is a hypergeometric function, and 

is the regularized beta function as defined by The mean, variance, skewness, and 

kurtosis of Student's -distribution of a district-level predictive seasonal malarial hyperendemic transmission 

oriented  risk model then would be =0 , = ., =0 and = where 

 

By do doing, the characteristic functions for the first few  sampled district-level hyperendemic transmission 

oriented covaraite coefficients values  would then be of  then would 
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be = , = , = , = , =

and so on, where is a modified Bessel function of the second kind.  

The multivariate form of the Student's t-distribution with correlation matrix and m degrees of freedom for an 

empirical sampled dataset of malaria-related district-level geopredictive  field and remote hyperendemic 

transmission  oriented covariate coefficient  may be implemented as MultivariateTDistribution[r, m] using SPSS 

multivariate statistics`. By so doing, the so-called distribution may be useful for testing if two observed 

distributions have the same mean in the dataset. gives the probability that the difference in two observed 

means for a certain statistic t with n degrees of freedom would be smaller than the observed value purely by chance 

employing (Cressie 1993). Thus,  if a malarialogist/experimenter 

lets  be a normally distributed randomized district-level seasonal-sampled geopredictive hyperendemic 

transmission oriented  variable with mean 0 and variance ,  and also lets have a chi-squared distribution 

with n degrees of freedom where  and   are independent then would be  distributed as Student's t with 

n degrees of freedom in the risk model. The means in a geopredictive district-level regression-based malarial risk 

model that   the larger the critical value the more precise the residually forecasted estimates. This makes sense since 

the more means there are; the greater the likelihood that at least some differences between pairs of hyperendemic 

transmission oriented variable means will be large due to chance alone in the residually forecasted estimates. 

Typically, the empirical seasonal sampled district-level  malaria-related  time series data geopredictive variables   is 

either the sample  derivative from fitting the model to an observed time series, or the standardized residuals obtained 

by dividing the sample data by the conditional standard deviations ( see Jacob et al. 2009d). 

Alternatively, a malarialogist/experimenter can test for conditional heteroscedasticity in a geopredictive district-

level malaria-related risk model by conducting an Engle's ARCH test (1982) (archtest)ARCH test in SAS
 
on any 

squared residual series. SAS /GIS software provides an interactive Geographic Information System (GIS) within the 

SAS System. Many types of data have a spatial aspect, including demographics, marketing surveys, and 

epidemiological studies. This software also enables you to do more than simply view data in its spatial context. The 

statistical software package allows you to interact with data by selecting features and performing actions based on 

those selections. SAS/GIS software draws on computing capabilities of the SAS System and enables you to access, 

manage, analyze, and present your data easily. SAS/GIS software uses two basic types of data: Spatial data - 

containing the coordinates and identifying information describing the map itself; and,  Attribute data - containing 

information that can be linked to the spatial data--for example, matching addresses or coordinates in the spatial data  

For example, the U.S. Census Bureau distributes both types of data: TIGER line files - contain spatial information 

that you can use to build maps and   summary tape files - contain population and other demographic information that 

you can link to the maps ( www.esri.com).   

Among the most important methodology in which a malarialogist/experimenter can use sampled district-level 

seasonal hyperendemic transmission oriented attribute data in SAS/GIS include using variables from the attribute 

data as themes for layers. For example, an attribute dataset containing district-level malaria population data 

attributes could provide a theme for a map of census tracts by creating actions that display or manipulate the 

attribute data when features are selected in the map. The actions can range from simple, such as displaying sampled 

hyperendemic transmission oriented observations from an attribute dataset that relate to features in the map, to 

complex analyses, such as submitting procedures from SAS/STAT software to perform spatial statistical analyses. 

One of the key concepts with SAS/GIS software is selecting features from a district-level malarial map and then 

performing actions on the attribute data associated with those features (www.sas.com). Actions defined  for  robustly 

quantitating seasonal-sampled district-level geopredictive malarial-related hyperendemic transmission oriented 

explanatory covariate coefficients then include: 1) displaying field/clinical/remote sampled observations from the 

attribute data sets that relate to the selected map features 2) opening additional maps that relate to selected map 
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features 3) displaying graphic images that relate to the selected map features 4) interactively sub-setting the attribute 

datasets according to the subset of selected map features, and 5) submitting SAS programs for processing subsets of 

the attribute data that relate to the selected map features ( see Jacob et al. 2008c).  

The simple ARCH(2) model, in SAS/GIS for instance,  can be estimated using the AUTOREG procedure in the 

statistical software package. The MODEL statement option GARCH=(Q=2) specifies the ARCH(2) 

model(www.sas.edu). The OUTPUT statement with the CEV= option would then produce the conditional variances 

V from the ecological empirical dataset of field and remote sampled malaria-related explanatory hyperendemic 

transmission oriented covariate coefficients. The conditional variance and its residual forecasts can then be 

calculated using the sampled parameter estimates in  

 where This SAS/GIS derived 

malaria-related risk model can be estimated for example, as follows:  

  proc autoreg data=ibm maxit=50; 

      model r = / noint garch=(q=2); 

      output out=a cev=v; 

   run; 

 

While conventional time series SAS/GIS derived malaria-related geopredictive district-level models operate under 

an assumption of constant variance, the ARCH process introduced allows the conditional variance to change over 

time as a function of past errors leaving the unconditional variance constant. This type of model behavior has 

already proven useful in modeling several different economic phenomena. In Engle (1982), Engle (1983) and Engle 

and Kraft (1983), models for the inflation rate were constructed for recognizing that the uncertainty of inflation 

tended to change over time. In Coulson and Robins (1985) the estimated inflation volatility was related to some key 

macroeconomic variables. Models for the term structure using an estimate of the conditional variance as a proxy for 

the risk premium were also given in Engle et al. (1985). The same idea was applied to the foreign exchange market 

in Domowitz and Hakkio (1985). In Weiss (1984) ARMA models with ARCH errors were found to be successful in 

modeling thirteen different U.S. macroeconomic time series. Common to most of the above applications however, is 

the introduction of a rather arbitrary linear declining lag structure in the conditional variance equation to take 

account of the long memory typically found in empirical dataset, since estimating a totally free lag distribution often 

leads to violation of the non-negativity constraints. Thus, SAS/GIS-derived ARCH errors may not be by themselves 

relevant for geopredictive district-level seasonal malarial risk modeling exercises. 

 A new, more general class of processes, GARCH (Generalized Autoregressive Conditional Heteroskedastic) in 

SAS/GIS
 
may instead be introduced for allowing a much more flexible lag structure in a geopredictive district-level 

malarial risk model. The extension of the ARCH process to the GARCH process bears much resemblance to the 

extension of the standard time series AR process to a more generalized ARMA process (Cressie 1993) and, as such, 

may permit a more robust description in many predictive seasonal malarial uncertainty risk modeling situations. By 

so doing, a new class of processes may be formally also presented and conditions for their wide-sense stationary 

quantitated. The simple GARCH(1, 1) process, for instance, may be considered for   regressing and then determining 

an empirical sampled dataset of district-level seasonal sampled field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented geopredictive autoregressive covariate coefficients statistical significance. As 

previously mentioned, it is well established, that the autocorrelation and partial autocorrelation functions are useful 

tools in identifying and checking time series behavior of the ARMA form in the conditional mean.  

Similarly the autocorrelations and partial autocorrelations for the squared process may prove helpful in identifying 

and checking GARCH behavior in the conditional variance equation of a geopredictive district-level malarial 

regression based risk model. By so doing, the MLE of the linear regression model with GARCH errors may be put 

forward to effectively quantitate the asymptotic independence between the estimates of the mean employing the 

variance parameters carried over from the ARCH regression model. It may be argued that a simple GARCH related 

geopredictive autoregressive seasonal district-level malarial –related uncertainty risk model provides a marginally 
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better fit and a more plausible learning mechanism than the ARCH model with an eight order linear declining lag 

structure as in Engle and Kraft (1983).  

Alternatively, a new, more general class of processes, GARCH (Generalized Autoregressive Conditional 

Heteroskedastic) in SAS/GIS
 
may be introduced, allowing for a much more flexible lag structure in a geopredictive 

malarial model. For example, AutoRegressive Conditional Heteroskedasticity (ARCH) models(Engle, 1982) may be 

then used to characterize and model observed time series in an empirical ecological dataset of malaria-related 

explanatory  hyperendemic transmission oriented covariate coefficients . Based on skewness and kurtosis, Jarque 

and Bera (1980) calculated the test statistic where 

. The (2) distribution rendered an approximation to the normality test . 

When the GARCH model was estimated, the normality test was obtained using the standardized 

residuals . As such, this normality test may be used to detect misspecification in an empirical dataset of 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented geopredictive 

autoregressive covariate coefficients constructed from a family of ARCH models.  

SAS/GIS
 
derived ARCH models are employed whenever there is reason to believe that, at any point in a series, the 

terms will have a characteristic size, or variance. In particular ARCH models assume the variance of the current 

error term or innovation to be a function of the actual sizes of the previous time periods' error terms: often the 

variance is related to the squares of the previous innovations. ARCH models are also employed in modeling 

financial time series, for example, that exhibit time-varying volatility clustering, (i.e. periods of swings) followed by 

periods of relative calm Thus, suppose  a malarialogist/experimenter  wants to model a time series  dataset of 

district-level  malaria-related geopredictive time series  explanatory  hyperendemic transmission oriented  covariate 

coefficients using an ARCH process. In these models ,  would denote the error terms (i.e., return residuals, with 

respect to a mean process) in the series terms. These   would then be split into a stochastic piece  and a 

time-dependent standard deviation  for characterizing the typical size of the terms so that  could 

be efficitively qunatiated in the risk model. The random variable is a strong white noise process (Cressie 1993). 

The series  would then be modeled by where 

and .An ARCH(q) district-level  geopredictive malarial related risk model can then 

be estimated using OLS.  

A methodology to test for the lag length of  SAS ARCH errors using the Lagrange multiplier test can also 

then be  proposed. This procedure could include :1) estimating  the best fitting geopredictive autoregressive model 

AR(q) . By so doing, the 

squares of the error  in the model can be obtained and thereafter regressed employing  a constant and q lagged 

values in where q is the length of ARCH lags.  The null hypothesis for the 

geopredictive autoregressive  district-level malarial risk model would be that, in the absence of ARCH components, 

 would be rendered for all . The alternative hypothesis would be that, in the presence of 

ARCH components, at least one of the estimated  district sampled  explanatory hyperendemic trasnmission 

oriented  coavariate coefficients must be significant. In a sample of the residuals under the null hypothesis of no 

ARCH errors, the test statistic TR² would then follow distribution with q degrees of freedom. If TR² is greater 
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than the chi-square table value in the district-level predictive risk model residual forecasts, the 

malarialogist/experimenter can reject the null hypothesis and conclude there is an ARCH effect in the ARMA 

model. If TR² is smaller than the chi-square table value the null hypothesis may not be rejected. Further, if an SAS 

derived ARMA-related residual predictive district-level malarial risk model is assumed for the error variance, the 

model could be delineated as a generalized autoregressive conditional heteroskedasticity [GARCH, 

Bollerslev(1986)]  model. In such circumstances, the GARCH(p, q) model (where p is the order of the GARCH 

terms and q ) would be based on the order of the ARCH terms as   given 

by  

Generally, when testing for heteroskedasticity in econometric models, the best test has been the White test. 

However, when dealing with time series sampled geopredictive district-level regression-based malarial data, this 

means testing for ARCH errors and GARCH errors in the residually forecasted field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented autoregressive estimates. The lag length p of a GARCH(p, q) 

process in the time series geopredictive seasonal district-level  malarial risk model can then be  established by 

estimating  the best fitting AR(q) model using 

 and by  computing  and 

plotting  the autocorrelations of  by The asymptotic, for large 

samples, standard deviation of would then be  .( see Engle 1972) Individual time series explanatory 

hyperendemic transmission oriented covariate coefficient  measurement values that are larger than   would 

then  indicate seasonal district-level   geopredictive GARCH errors. Further, to estimate the total number of lags, the 

Ljung-Box test  may be employed for determining the statistical significance levels of the sampled explanatory 

hyperendemic transmission oriented covariate coefficients. The Ljung-Box Q-statistic follows distribution with n 

degrees of freedom if the squared residuals are uncorrelated(Cressie 1993). It is recommended to consider up to 

T/4 values of n. (see Engle 1972). The null hypothesis then for a seasonal geopredictive district-level malarial risk 

models would state that there are no ARCH or GARCH errors in the sampled hyperendemic transmission oriented 

residual forecasts. Rejecting the null in the risk model would thus means that such errors exist only in the 

conditional variance.  

Nonlinear GARCH (NGARCH) also known as Nonlinear Asymmetric GARCH(1,1) (NAGARCH) as introduced by 

Engle and Ng in 1993 [i.e  ] 

may be also useful for regressing explanatory district-level predicting malarial-related hyperendemic transmission 

oriented covariate coefficients. By so doing, then if the residual forecasts would reflect the leverage effect which in 

turn would increase future volatility in the coefficients by a larger amount than positive uncorrelated effects of the 

same magnitude. As such, this would signify that negative biased effects in the regressed parameter estimators. This 

model should not be confused, however, with the NARCH model, together with the NGARCH extension as 

introduced by Higgins and Bera in 1992. 

SAS/GIS can also generate Integrated Generalized Autoregressive Conditional Heteroskedasticity IGARCH which 

is a restricted version of the GARCH model, where the persistent explanatory hyperendemic transmission oriented 

district-level parameter estimators can be made to sum up to one. By so doing, there would a unit root in the 

GARCH process. The condition for this would be ( see Engel 1972).The exponential 
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generalized autoregressive conditional heteroskedastic (EGARCH) model by Nelson (1991) is another form of the 

GARCH model that may be employed for uncertainty quantitation of regressed residuals rendered from 

autoregressive time series geopredictive district-level malarial risk model. Formally, an 

EGARCH(p,q): where 

, is the conditional variance, , , , and are coefficients, and 

may be a standard normal variable or, come from a generalized  risk model related error distribution. The 

formulation for  thus would allow the sign and the magnitude of to in the geopredictive district-level 

malaria-related risk model to have separate effects on the volatility. This may be particularly useful to assess the 

significance of the sampled explanatory hyperendemic transmission oriented covariate coefficients. Fortunately, 

since may be negative there would be no restrictions on the malarial-related district -level parameter 

estimator dataset. 

Further, the GARCH-in-mean (GARCH-M) model adds a heteroskedasticity term into the mean equation. 

It has the specification: , thus the residual  in a geopredictive seasonal district-

level malarial risk model would be defined as . The Quadratic GARCH (QGARCH) model by 

Sentana (1995) may also be employed to model symmetric effects of positive and negative shocks in a geopredictive 

district-level malarial risk model. In the example of a GARCH(1,1) model, the residual process  then would be 

where is i.i.d. and . Similar to QGARCH, 

the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model by Glosten et al. (1993) may also model seasonal 

sampled geopredictive explanatory hyperendemic transmission oriented covariate coefficients asymmetry in a risk 

empirical sampled parameter estimator model ARCH derived process. The idea here would be to model 

where is i.i.d., and where 

if, , and if .The Threshold GARCH (TGARCH) model by Zakoian 

(1994) may also be employed for robust district-level modeling using field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented geopredictive autoregressive as it is similar to GJR GARCH, whereby the 

specification would be one based on conditional standard deviations in the empirical sampled datasets. The only 

difference between the models is that instead of conditional 

variance: where if , and 

if . if , and if  would be used. 

The extension of the ARCH process to the GARCH process may reveal as much resemblance to the extension of the 

standard time series AR process to the general ARMA geopredictive seasonal district-level malarial data processing. 

As such a more parsimonious description in many risk modeling situations may be permitted in SAS/GIS. By so 

doing, a new class of processes may be also formally presented and conditions for their wide-sense stationarity. The 

simple GARCH (1, 1) process, for instance, may be considered for quantitating a correlated empirical sampled 

dataset of malarial-related explanatory district level hyperenedmic transmission oriented covariate coefficients. As 

mentioned it is well established, that the autocorrelation and partial autocorrelation functions are useful tools in 

identifying and checking time series behavior of the ARMA form in the conditional mean.  

 

The autocorrelations and partial autocorrelations for the squared process may prove helpful in identifying and 

checking GARCH behavior in the conditional variance equation of a geopredictive  malarial risk model residual 

forecasts. As such, the MLE of the linear regression model with GARCH errors may be put forward, to quantitate 

the asymptotic independence between the estimates of the mean employing the variance parameters carried over 

from the ARCH regression model. Additionally, a unified approach to generating standardized-residuals-based 

correlation tests for checking GARCH-type models may be pursued. This approach may be valid in the presence of 

geopredictive seasonal malarial-related hyperendemic transmission oriented uncertainty model estimation, using 
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various standardized error distributions which may in turn be applicable to testing various types of misspecifications 

in residually forecasted estimates. By using this approach, a malarialogist/experimenter could theoretically  also 

propose a class of power-transformed-series (PTS) correlation tests for providing certain robustifications and power 

extensions to the Box–Pierce, McLeod–Li, Li–Mak, and Berkes–Horv´ath–Kokoszka tests for diagnosing GARCH-

type malarial district-level  geopredictive risk models It may be then argued that a simple GARCH related  district-

level predictive malarial risk model provides a marginally better fit and a more plausible learning mechanism than 

the ARCH model with an eight order linear declining lag structure as in Engle and Kraft (1983).  

 

The Ljung-Box statistic any also be provided in the SAS/GIS procedure ARIMA for an assortment of lags . For 

large, the Box- Pierce and Ljung-Box statistics are essentially equivalent. The Ljung-Box (1978) statistic is typically 

used since it better approximates a chi-squared random variable for smaller.  Interestingly, a similar statistic to the 

Ljung-Box statistic was introduced by Monti (1994) which  uses the standardized partial autocorrelation function up 

to lag where the residual partial autocorrelation is at lag. Recently, Peña and Rodríguez (2002) proposed a statistic 

based on the determinant of the residual autocorrelation matrix.  Under the null hypothesis the authors suggested a 

fitted adequate model for the ARMA process. By so doing, the authors where also able to generate a matrix in 

SAS/GIS that approximated the identity matrix.  

The identity matrix is the simplest nontrivial diagonal matrix, defined such that for all vectors . An 

identity matrix may be denoted I or E (the latter being an abbreviation for the German term "Einheitsmatrix"; 

Courant and Hilbert 1989, p. 7). Identity matrices are sometimes also known as unit matrices (Akivis and Goldberg 

1972,). The  identity matrix is given explicitly by for , ..., , where is the Kronecker 

delta. Written explicitly,  The identity matrix is implemented in SAS as IdentityMatrix[n]. 

"Square root of identity" matrices can be defined for by solving 

For , the most general form of the resulting 

square root matrix is giving as limiting 

cases. Testing for model adequacy is equivalent to testing if is approximately the identity matrix (Cressie 1993). 

Thus, by employing an identity matrix district-level regressed field/clinical/remote hyperendemic transmission 

oriented residual forecasts rendered may be asymptotically distributed as a linear combination of chi-squared 

random variables while simultaneously approximately a Gamma distributed  for larger covariate coefficient 

measurement  values. In practice, they however recommended that the matrix be constructed using the standardized 

residual forecasts as this would, according to the authors improve the Gamma distribution approximation.  

Further, in Peña and Rodríguez (2006) they showed that the log of the determinant follows the same asymptotic 

distribution as and the residual forecasts according to them can be better in small sample time series. The statistic 

then may determines whether the matrix of a geopredictive seasonal malaria-related hyperendemic transmission 

oriented risk model is an identity matrix, or equivalent (i.e., if the fitted model is adequate). It has been 

demonstrated that both and improve over the Ljung-Box and Box-Pierce statistics; see Monti (1994) or Peña and 

Rodríguez (2002, 2006). However, neither appears to be frequently implemented in applications of time series 

district-level malarial-related data attributes. Particularly, the Peña and Rodríguez statistic may be difficult to 

implement since it involves calculating the determinant of a matrix. As pointed out in Lin and McLeod (2006), the 

statistic constructed using the standardized residuals may be degenerate in practice since the matrix could be ill-

conditioned or singular.  
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The Ljung-Box Q-test in SAS may be also employed to assess autocorrelation in any empirical sampled district level 

malarial –related series with a constant mean. This includes residually forecasted series, which can be tested for 

autocorrelation during residual model diagnostic checks. Additionally, if the residuals result from fitting a model 

with g geoparameter estimators, a malarialogist and or experimenter could compare the test statistic to a 

distribution with m – g degrees of freedom, if so desired. Optional input arguments to lbqtest in SPSS could then 

modify the degrees of freedom of the null distribution in the dataset(ww.sas.edu). lbqtest computes the sample Q-

statistic whereby the last row of the series contains the most recent observation of  a stochastic sequence (www-

01.ibm.com/software/analytics/spss/).  

The Q-statistic is a test statistic output by either the Box-Pierce test or, in a modified version which provides better 

small sample properties, by the Ljung-Box test. The q statistic or studentized range statistic is a statistic used for 

multiple significance testing across a number of means. The formula for Tukey's test is: 

where YA is the larger of the two means being compared, YB is the smaller of the two means 

being compared, and SE is the standard error of the data in question. This qs value can then be compared to a q value 

in SAS constructed geopredictive district-level seasonal malaria-related risk model employing a studentized range 

distribution. If the qs value is larger than the qcritical value obtained from the distribution, the two means would then 

be deemed significantly different.
 
Tukey's test compares the means of every treatment to the means of every other 

treatment; that is, it applies simultaneously to the set of all pairwise comparisons  and identifies any 

difference between two means that is greater than the expected standard error (Hosmer and Lemeshew 2000). The 

confidence coefficient for the district-level malaria-related empirical sampled dataset for all sample sizes would then 

be equal and exactly 1 − α. For unequal sample sizes, the confidence coefficient is greater than 1 – α (Cressie 1993) 

In other words, the Tukey method would be conservative when there are unequal sample sizes in the malarial risk 

model.  Since the null hypothesis for Tukey's test in  SAS/GIS routinely compares all means from the same 

population (i.e. μ1 = μ2 = μ3 = ... = μn) (http://www-01.ibm.com/software/analytics/spss/), the means  in the 

geopredictive district-level  malarial-related regression-based  risk model would be as  normally distributed 

according to the central limit theorem (CLT).  

In probability theory, the CLT states that, given certain conditions, the arithmetic mean of a sufficiently large 

number of iterates of independent random variables, each with a well-defined expected value and well-defined 

variance, is approximately normally distributed. That is, suppose that a sample in a district-level predictive seasonal 

malarial –related empirical ecological dataset is obtained containing a large number of field/clinical/remote 

hyperendemic transmission oriented observations. Further, suppose each malaria-related geopredictor is randomly 

generated in such a way that it does not depend on the values of the other hyperendemic transmission oriented 

observations in the dataset, and that the arithmetic average of the observed values is computed. If this procedure is 

performed many times, regardless of statistical software package employed for the analyses, the computed average 

will not always be the same each time; the  CLT states that the computed values of the average will be distributed 

according to the normal distribution (commonly known as a "bell curve") ( see Rao 1973). 

The CLT has a number of variants. In its common form, the random variables must be identically distributed. In 

variants, convergence of the mean to the normal distribution also occurs for non-identical distributions, given that 

they comply with certain conditions. In more general probability theory, a CLT is any of a set of weak-convergence 

theorems. They all express the fact that a sum of many i.i.d. random variables, or alternatively, random variables 

with specific types of dependence, will tend to be distributed according to one of a small set of attractor 

distributions. When the variance of the i.i.d. variables is finite in a robust geopredictive district-level malarial risk 

model, the attractor distribution is the normal distribution (see Jacob et al. 2012b). In contrast, the sum of a number 

of i.i.d. random variables with power law tail distributions will decrease as |x|
−α−1

 where 0 < α < 2 (and therefore 

having infinite variance) will tend to an alpha-stable distribution with stability parameter (or index of stability) of α 

as the number of variables grows in the district-level  autoregressive malarial geopredictive  risk model.  

http://en.wikipedia.org/wiki/Test_statistic
http://en.wikipedia.org/wiki/Box-Pierce_test
http://en.wikipedia.org/wiki/Ljung-Box_test
http://en.wikipedia.org/wiki/Studentized_range
http://en.wikipedia.org/wiki/Standard_error_(statistics)
http://en.wikipedia.org/wiki/Standard_error
http://en.wikipedia.org/wiki/Confidence_coefficient
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Null_hypothesis
http://www-01.ibm.com/software/analytics/spss/
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Sample_(statistics)
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Identically_distributed
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Weak_convergence_of_measures
http://en.wikipedia.org/wiki/Attractor
http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Stable_distribution


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

41 

 

For instance , if a malarialogist/experimenter  lets{X1, ..., Xn} be a random sample of size n—that is, a 

sequence of i.d.d. random variables drawn from empirical distributions of seasonal sampled georeferenced 

explanatory field/clinical/remote hyperendemic transmission oriented covariate coefficient expected  values given 

by µ then the finite variances given by ζ
2
. By the law of large numbers, the sample averages in the geopredictive 

district-level  malarial risk  model would   converge in probability and almost surely to the expected value µ as n → 

∞. However, suppose, the malarialogist/experimenter is interested in the sample 

average  random variables. The classical CLT would then describe the size and the 

distributional form of the stochastic fluctuations around the deterministic number µ during convergence. More 

precisely, the theorem  states that as n gets larger in the geopredictive seasonal malarial-related risk model, the 

distribution of the difference between the sample average Sn and its limit µ, must be multiplied by the factor √n  (that 

is √n(Sn − µ)), so as to approximate the normal distribution with mean 0 and variance ζ
2
. For large enough n, the 

distribution of Sn in the risk model would then be close to the normal distribution with mean µ and variance ζ
2
/n . 

The usefulness of the theorem is that the distribution of √n  (Sn − µ) in the geopredictive malarial-related 

georefernced hyperendemic transmission oriented data points would approach normality regardless of the shape of 

the distribution of the individual Xi‘s.in the regressed dataset.  

For example, suppose {X1, X2,} is a sequence of i.i.d. random variables in a district-level ecological empirical  

dataset of  hyperendemic malarial transmission oriented observational predictors regressed with with E[Xi] = µ and 

Var[Xi] = ζ
2
 < ∞. Then as n approaches infinity, in SAS/GIS, the random sampled district-level variables √n(Sn − µ) 

will converge in distribution to a normal N(0, ζ
2
)

[e.g.
 ]. In the case ζ 

> 0, in the residually forecasted estimates, the convergence in distribution would signify that the cumulative 

distribution functions of √n(Sn − µ) and, as such, would converge point wise to the cdf of the N(0, ζ
2
) distribution. 

As such, for every sampled district-level geopredictive malarial-related field/clinical/remote hyperendemic 

transmission oriented covariate coefficient measurement values z, 

where Φ(x) would be the standard normal and as such  cdf 

could be evaluated at x. Note that the convergence would be uniform in z the geopredictive risk model in the sense 

that  would denote the least upper bound or 

supremum of the regressed district-level data attributes. This then would then give rise to the normality assumption 

of Tukey's test. The assumptions in the geopredictive district-level seasonal malarial-related risk model then would 

be that the sampled observational predictors being tested are independent and that there is equal within-group 

variance across the groups associated with each mean in the test (i.e., homogeneity of variance).  

Importantly, when testing the residuals of an estimated ARIMA malarial-related predictive risk models in SAS/GIS 

the degrees of freedom would need to be adjusted to reflect the geoparameter estimation. For instance, for an 

ARIMA (p,0,q) SAS derived malarial-related geopredictive risk model, the degrees of freedom should be set to 

. The studentized range computed from a list x1, ..., xn of the seasonal sampled field/clinical/remote 

hyperendemic transmission oriented explanatory covariate coefficients then would be  given by the 

formulas  

where  where the square of the sample standard deviation s, could be  computed 

as  (i.e.,the sample mean).The critical value of q would then be based on three factors:α 
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(i.e., the probability of rejecting a true null hypothesis) n (i.e, the number of district-level hyperendemic 

transmission oriented  observations or groups) :and.v (i.e., degrees of freedom in the second sample). Thus, if X1, ..., 

Xn are i.d.d. predictive district-level malarial-related random variables that are normally distributed in an empirical 

sampled dataset, the probability distribution of their studentized range would be the studentized range distribution. 

This probability distribution in the risk model would then be the same regardless of the expected value and standard 

deviation of the normal distribution from which the sample is drawn. This probability distribution has applications to 

hypothesis testing in malaria research. For example, Tukey's range test and Duncan's new multiple range test 

(MRT), which uses q statistics, can be used as post-hoc analysis to test between two groups especially if there is a 

significant difference after rejecting null hypothesis by ANOVA. 

Conversely, for a pure geopredictive malarial district-level malaria-related risk model the Yule-Walker (YW) 

equations may be used to provide a fit in R. R is a free software environment for statistical computing and graphics. 

It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS (http://www.r-project.org) 

comprehensive. R incorporates all of the standard statistical tests, models, and analyses, as well as providing a 

comprehensive language for managing and manipulating data  Presently R is maintained by a core team of 19 

developers, including some very senior statisticians. The graphical capabilities of R are outstanding, providing a 

fully programmable graphics language that surpasses most other statistical and graphical packages.  The validity of 

the R software is ensured through openly validated and comprehensive governance as documented for the US 

Food and Drug Administration (R Foundation for Statistical Computing, 2008). Because R is open source, unlike 

closed source software, it has been reviewed by many internationally renowned statisticians and computational 

scientists. R is licensed under the GNU General Public License, with copyright held by The R Foundation for 

Statistical Computing. R has no license restrictions (other than ensuring our freedom to use it at our own discretion), 

and so a malarialogist/experimeneter may run it anywhere and at any time, and even sell it under the conditions of 

the license. R has over 4800 packages available from multiple repositories specializing in topics like econometrics, 

data mining, spatial analysis, and bio-informatics. (http://www.r-project.org).  R is cross-platform. R runs on many 

operating systems and different hardware. It is popularly used on GNU/Linux, Macintosh, and Microsoft Windows, 

running on both 32 and 64 bit processors.  R plays well with many other tools, importing data, for example, from 

CSV les, SAS, and SPSS, or directly from Microsoft Excel, Microsoft Access, Oracle, MySQL, and SQLite. It can 

also produce graphics output in PDF, JPG, PNG, and SVG formats, and table output for LATEX and HTML. R has 

active user groups where questions can be asked and are often quickly responded to, often by the very people who 

developed the environment. This support is second to none. ˆ New books for R (the Springer Use R! series) are 

emerging, and there is now a very good library of books for using R. 

 Jacob et al. (2010b) constructed multiple Eastern Equine Encephalitis Virus (EEEV) mosquito (e.g.Culex 

erracticus)-related geopredictive risk model to seasonally quantitate environmental estimators of arboviral disease 

transmission in Central Alabama in R. The YW equations the authors used were based on following set of equations 

where m = 0, ..., p, yielding p + 1 equations. In this model was the 

autocovariance function of Xt, which was the standard deviation of the input noise process which also was the 

Kronecker delta function. In mathematics, the Kronecker delta or Kronecker's delta is a function of two variables, 

usually integers (Cressie 1993).  The function was 1, if the sampled Cx. erracticus) geopredictive variables were 

equal, and 0 otherwise: where Kronecker delta δij was a piecewise function of variables 

and . For example, δ1 2 = 0, whereas δ3 3 = 1 in the model. In linear algebra, the identity matrix can be written 

as  and the inner product of vectors can be written as  ( Spiegel et al.1997). 

Because the last part of the Cx erracticus geopredictive risk model, the equation was non-zero only if m = 0. A set of 

equations were then solved by representing the equations for m > 0 in matrix form, thus rendering the 
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equation  which was then  solved for all 

The remaining equation for m = 0 was and as 

such was  solved for   

An alternative formulation was then constructed in Jacob et al. (2010b) in terms of the autocorrelation function. The 

autocorrelation function measures the correlation of a signal x(t) with itself shifted by some time delay η which can 

then be used to detect repeats or periodicity in a signal (Griffith 2003). The authors then used the autocorrelation to 

assess the effect of fluctuations (i.e., noise) on a periodic signal.The Cx erracticus habitat model AR parameters 

were then  determined by the first p+1 elements of the autocorrelation function. The full autocorrelation 

function was then derived by recursively calculating  The YW equations for an 

AR(2) process was then    and   Using the first equation  then yielded 

while the recursion formula yielded The solution 

set also included one solution, the minimal norm solution, which defined the  autoregressive system in the 

geopredictive Cx. erraticus habitat  risk model  whose characteristic polynomial had  either only stable zeros 

implying that only one stationary output existed for this system . Intermittently, the set was linearly regular or, had 

stable zeros as well as zeros of unit modulus, implying that stationary solutions of the system were a sum of a 

linearly regular process and a linearly singular process. The numbers of stable and unit circle zeros of the 

characteristic polynomial of the defined Cx. erraticus habitat autoregressive forecasting model system which was 

characterized in terms of the ranks of certain error matrices, and the characteristic polynomial of the autoregressive 

model defined by the minimal norm solution. By so doing, the residual forecasts had the least number of unit circle 

zeros and the most number of stable zeros over all possible solutions. Autoregressive statistics were then generated 

using the AUTOREG procedure in R to estimate whether the OLS regression estimates indicated significant serial 

correlation with an estimated order of a lagged covariance of 1. The AUTOREG procedure corrected for serial 

correlation using the YW method. The statistic indicated that serial correlation was not significant in the YW 

corrected Cx. erraticus predictive risk model. The YW estimates for the model indicated a R
2 

= 0.632, F statistics of 

39.177, and Durbin-Watson score of 1.935. 

In statistics, the Durbin–Watson statistic is a test statistic used to detect the presence of autocorrelation (i.e., a 

relationship between values separated from each other by a given time lag) in the residuals (prediction errors) from a 

regression analysis. Under the assumption of normally distributed disturbances, the null distribution of the Durbin-

Watson statistic is the distribution of a linear combination of chi-squared variables (see Griffith 2003). The p-value 

is computed using the Fortran version of Applied Statistics Algorithm as in Farebrother (1980, 1984). This 

algorithm is called "pan" or "gradsol". This p value is computed using a normal approximation with mean and 

variance of the Durbin-Watson test statistic If et is the residual associated with a seasonal sampled malarial-related  

district-level field/clinical/remote sampled hyperendemic transmission oriented geopredictive autoregressive 

explanatory hyperendemic transmission oriented observational predictors  at time t, then the test statistic 

is where T is the number of observations. Since d is approximately equal to 2(1 − r), where 

r is the sample autocorrelation of the residuals, d = 2 would indicate no autocorrelation in the malarial model 

residuals. The value of d always lies between 0 and 4 (Cressie 1993). If the Durbin–Watson statistic is substantially 
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less than 2, there would be evidence of positive serial correlation in the malaria-related hyperendemic transmission 

oriented residual forecasts.  

For instance, a seasonal-sampled malaria-related district-level  explanatory hyperendemic  trasnmission    

generalized Durbin-Watson Test may consider the following linear regression model:  using mupliple 

covariate coeffcients where is a data matrix, is a coefficient vector, and is a  disturbance 

vector. The error term  would then be assumed to be generated by the th-order autoregressive process 

where , is a sequence of independent normal error terms with mean 0 and variance . 

Usually, the Durbin-Watson statistic is used to test the null hypothesis against . (Griffith 

2003). Vinod (1973) generalized the Durbin-Watson statistic: where are OLS 

residuals. Using the matrix notation, where and  was then a 

matrix:  and there were zeros between 

and 1 in each row of matrix . The QR factorization of the design matrix  yielded an orthogonal 

matrix : where R was an upper triangular matrix. There then existed a submatrix of 

 such that and . Consequently, the generalized Durbin-Watson statistic for constructing 

a robust seasonal district-level malaria-related risk model would be stated as a ratio of two quadratic forms: 

 where  was upper n eigenvalues of and  is a standard normal variate, 

and . These eigenvalues may be obtained by a singular value decomposition of (see 

Golub and Van Loan; 1989; Savin and White; 1978). By so doing, the marginal probability (or p-value) for given 

  in the risk model then would be where  

Further, when the null hypothesis holds, the quadratic form  in the risk model residual forecasts 

targeting the stasictically significant  field/clinical/remote explanatory  hyperendemic transmission oriented 

covariate coefficients would have the characteristic function The distribution 

function would then be uniquely determined by the characteristic 

function . 

As a rough rule of thumb, if Durbin–Watson is less than 1.0 in a geopredictive district-level malarial related 

hyperendemic risk model, there may be cause for alarm. Small values of d indicate successive error terms are, on 

average, close in value to one another, or positively correlated. If d > 2, successive error terms are, on average, much 

different in value from one another, (i.e., negatively correlated) (Cressie 1993). In malarial-related regressions, this 

can imply an underestimation of the level of statistical significance in R 

 

Unfortunately Durbin Watson statistic can be  biased  towards 2, thus falsely showing that there is no autocorrelation 

when lagged values of the dependent variable are used as independent variables which is common in district-level 

malaria-related autoregressive geopredictive risk modeling explanatory seasonal sampled field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented covariate coefficients. As such, sampled explanatory 

hyperendemic transmission oriented covariate coefficient estimates on lagged independent variables may merely 

reflect the presence of an omitted variable or measurement error bias. Thus, adding up the contemporaneous and 
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lagged coefficients in a predictive district-level seasonal malaria-related model can actually increase, rather than 

reduce, bias in the residual forecasts. Also, specification tests based on the data at hand (as opposed to external data, 

such as external instruments), will generally not allow a malarialogist/experimenter to distinguish between true 

lagged effects, measurement error and/or omitted variable bias in the risk model. Although lagged effects  cannot 

reflect omitted variable bias or bias due to a mismeasured independent variable in a malaria-related geopredictive 

risk  model  the differential effect of short and long-term changes in conditions will fall into the "indeterminate" 

range(i.e., it would render an ambiguous result). The statistic tests only for correlation between the current error and 

the immediately preceding error (i.e. first order autocorrelation).    

Conversely, in R a vector autoregression (VAR) time series geopredictive district level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented geopredictive autoregressive malarial risk model may be 

constructed. A VAR is a statistical model which may be used to capture the linear interdependencies among multiple 

time series in a geopredictive district-level malarial risk model. VAR models would generalize the univariate AR by 

allowing for more than one evolving explanatory hyperendemic transmission oriented predictive variable in the 

model. All the variables in a VAR are treated symmetrically in a structural sense (although the estimated 

quantitative response coefficients will not in general be the same); each variable has an equation explaining its 

evolution based on its own lags and the lags of the other model variables (Griffith 2003). VAR modeling would not 

require as much knowledge about the forces influencing a hyperendemic transmission oriented geopredictive 

variable as do time series malarial-related structural models with simultaneous equations. The only prior knowledge 

required would be a list of the variables which can be hypothesized to affect each other intertemporally in the 

predictive district-level risk model. VARs are most successful, flexible, and easy to use models for the analysis of 

multivariate time series. It is a natural extension of the univariate autoregressive model to dynamic multivariate time 

series (Cressie 1993).  

VAR –related geopredictive R derived risk models could describe the evolution of an empirical dataset of k 

explanatory hyperendemic transmission oriented variables (i.e., seasonal malarial-related endogenous variables) 

over the same sample period (t = 1, T) as a linear function of their past values. The variables would be collected in a 

k × 1 vector it, which would have the I 
the

 element, yen, t and the time (t) hyperendemic transmission oriented 

predictive variable observation of the i 
th

 variable. For example, if the i 
Th

 seasonal sampled hyperendemic 

transmission oriented variable is represented by y, then yi, t is the value of the sampled explanatory covariate 

coefficient at time t. Thereafter, a p-th order VAR can be  denoted in R as VAR(p), 

is where the l-periods back observation yt−l  

would be the l-th lag of y when  c is a k × 1 vector of constants (i.e., intercepts), Ai is a time-invariant k × k matrix 

and et is a k × 1 vector of error terms satisfying the following — where every error term has mean 

zero. As such,   would be  the contemporaneous covariance matrix of error terms when Ω is a 

k × k positive-semidefinite matrix; and, the quantitation of the  residual forecasts would render 

for any non-zero k (i.e., there is no correlation across time; in particular, no serial correlation in 

individual error terms). A pth-order VAR is also called a VAR with p lags (Cressie 1993). The process of choosing 

the maximum lag p in the VAR predictive seasonal district-level malarial risk model would then render inferences 

dependent on the correctness of the selected lag order. 

Thereafter, a general example of a VAR(p)  in R with k  hyperendemic transmission oriented predictor  variables 

can be employed to construct a seasonal district level malarial-related empirical datasets of field/clinical/remote 

autoregressive explanatory covariate coefficients using a General matrix notation of a VAR(p).This would require 

using the equation where each is a k × 1 

vector and each is a k × k matrix. A dataset of VAR (1) predictive district-level malarial related risk model 

variables can then be written in matrix form employing 

in which only a single A matrix appears. This 

is because in a VAR(1) matric a maximum lag p equal to 1. Equivalently, a  malarial-related risk model may be 
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constructed in R using the following system of two equations 

 and 

A matrix notation can then be  constructed as 

:  

Rewriting the y variables in the seasonal malarial predictive  risk model  would then   render: 

:

, 

 

and

 By so doing, A malariologist/or experimenter could, if so desired, rewrite a VAR(p) with k variables in a general 

way which could then  include  T+1 seasonal sampled hyperendemic transmission oriented observations through 

 where: 
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and 

 

These matrices would then solve for the coefficient matrix B using an OLS estimation of  . Each 

hyperendemic transmission oriented geopredictive variable in the model would then have one equation. The current 

(time t) district-level field/clinical/remote sampled malaria-related predictive autoregressive hyperendemic 

transmission oriented observation of each of the district level seasonal sampled variable  would then simply depend 

on its own lagged values as well as on the lagged values of each other variable in the VAR. 

A VAR with p lags in a predictive seasonal malarial-related risk model can also be rewritten in R as a VAR with 

only one lag by appropriately redefining the dependent variable (e.g., district level malarial prevalence rates). The 

transformation amounts to stacking the lags of the VAR(p) variable in the new VAR(1) dependent variable in R and 

appending identities to complete the number of equations. Thereafter, a VAR (2) derived predictive district level 

seasonal malarial-related risk model could be generated from l where 

  which then could be recast as the VAR (1) model suing 

 where I is the identity matrix. 

 

In the class of multivariate linear models, pure VARs dominate in macroeconomic applications. However, VAR 

models may require a rather large lag length in order to accurately describe a time series of district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented geopredictive autoregressive 

explanatory covariate coefficients adequately. This means a loss of precision because many parameter estimators in 

the risk model have to be estimated. The problem could be avoided by using VARMA models that may provide a 
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more parsimonious description of the data generating process (DGP). In contrast to the class of VARMA models, 

the class of VAR models is not closed under linear transformations. For example, a subset of variables generated by 

a VAR process is typically generated by a VARMA, not by VAR process (Lutkepohl 1984a,b). The VARMA class 

includes many models of interest such as unobserved component models. It is well known that linearized dynamic 

stochastic general equilibrium (DSGE) models imply that the variables of interest are generated by a finite-order 

VARMA process. Ferndandez-Villaverde et al.(2007) show formally how DSGE models and VARMA processes are 

linked. Also Cooley and Dwyer (1998) claim that modeling macroeconomic time series systematically as pure 

VARs is not justified by any  underlying economic theory. The recent debate between Chari, Kehoe and McGrattan 

(2008) and Christiano, Eichenbaum and  Vigfusson (2006) on the ability of structural VARs to uncover fundamental 

shocks also questions implicitly the ability of pure VARs to capture the dynamics of any malarial-related district-

level predictive  epidemiological study site. 

 

Further, there are also some complications that make VARMA modeling more difficult for district level 

geopredictive hyperendemic transmission oriented malarial risk modeling First, VARMA representations are not 

unique. That is, there are typically many parameterizations that can describe the same DGP (see Lutkepohl 2005). 

Therefore, a malarialogist/experimenter has to choose first an identified representation. In any case, an identified 

VARMA representation has to be specified by more integer-valued parameter estimators than a VAR representation 

that is determined just by one integer estimator, the lag length. This aspect introduces additional uncertainty at the 

specification stage of the modeling process, although procedures for VARMA models do exist which could be used 

in a completely automatic way. An identified representation, however, may be then for consistent estimation in a 

predictive malarial risk model. Apart from a more involved specification stage, the estimation stage may be affected 

by an identity matrix problem because it would have to examine many different models in order to properly 

quantitate district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive 

autoregressive explanatory covariate coefficients. 

Fortunately, where n×n matrices in a robust geopredictive malarial risk model are used to represent linear 

transformations from an n-dimensional vector space to itself, In  would represent the identity function, regardless of 

the basis. The ith column of an identity matrix is the unit vector ei. (Cressie 1993). It follows that the determinant of 

the identity matrix is 1  and the trace is n. Using the notation that is sometimes used to concisely describe diagonal 

matrices, a malarialogist/experimenter could then write: It can also be written using 

the Kronecker delta notation:  Identity matrices are sometimes also known as unit matrices (Akivis 

and Goldberg 1972). The identity matrix would then be given explicitly by for , ..., , where 

is the Kronecker delta which in turn could be written explicitly as  

In mathematics, the Kronecker delta is a function of two variables, usually integers. The function is 1 if  the 

empirical dataset of geopredictive malarial –related district level risk model hyerendemic transmission oriented 

variables, for example,  are equal, and 0 otherwise: where Kronecker delta δij is a 

piecewise function of variables and . For example, δ1 2 = 0, whereas δ3 3 = 1.For a robust seasonal predictive 

district level seasonal malarial related risk model, the identity matrix can then be written as  and the 

inner product of vectors can be written as The identity matrix for the risk model  would 

then have  the property that, when it is the product of two square matrices, the matrices would be the inverse of one 

another. The identity matrix of a given size is the only idempotent matrix of that size having full rank (Cressie 

1993). In algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself 
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(http://mathworld.wolfram.com/IdentityMatrix.html).  As such, the matrix M in a robust geopredictive seasonal 

district-level malarial model is idempotent if, and only if ,MM = M. For this product MM to be defined in the risk 

however, M must be a square matrix. Viewed this way, idempotent matrices for geopredictive seasonal district-level 

malarial risk modeling are idempotent elements of matrix rings. With the exception of the identity matrix, an 

idempotent matrix is singular; that is, its number of independent rows (and columns) is less than its number of rows 

(and columns). This can be seen from writing MM = M for the predictive seasonal district-level malarial model, 

assuming that M has full rank (i.e., non-singular), by pre-multiplying by M
−1

 to obtain M = M
−1

M = I. When an 

idempotent matrix is subtracted from the identity matrix, the result is also idempotent. This holds since [I − M] 

[I − M] = I − M − M + M
2
 = I − M − M + M = I − M. An idempotent matrix is always diagonalizable and its 

eigenvalues are either 0 or 1(Cressie 1993). The trace of an idempotent matrix — the sum of the elements on its 

main diagonal — equals the rank of the matrix and thus is always an integer (Meyer 2000). This provides an easy 

way of computing the rank, or alternatively an easy way of determining the trace of a matrix whose elements are not 

specifically know. This feature may be useful in a robust predictive seasonal district-level malarial risk model for 

example, in establishing the degree of bias in using a sample variance as an estimate of a population variance.  

Idempotent matrices arise frequently in regression analysis. For example, in ordinary least squares, the regression 

problem is to choose a vector of coefficient estimates so as to minimize the sum of squared residuals (i.e., 

mispredictions) using ei: in matrix form and minimizing  where y is a vector of 

dependent variable hyperendemic transmission oriented observations, when  X is a matrix each of whose columns is 

a column of observations on one of the independent variables. The resulting estimator then would be 

where superscript T indicates a transpose, and the vector of residuals is 

 By so doing,  both M and 

(the latter being known as the hat matrix)  would be idempotent matrices in the geopredictive 

seasonal district-level malarial risk model, a fact which would then allow simplification when the sum of squared 

residuals is computed using The idempotency of M 

can also then  plays a role in other calculations as well, such as in determining the variance of the estimator  in the 

malarial risk model. 

Further, since an idempotent linear operator P is a projection operator on the range space R(P) along its null space 

N(P)(Griffith 2003)  P would an orthogonal projection operator if, and only if ,it is idempotent and symmetrical  in 

the geopredictive seasonal district-level malarial risk model. In linear algebra and functional analysis, a projection is 

a linear transformation P from a vector space to itself such that P
2
 = P (Cressie 1993)  That is, whenever P is applied 

twice to any  seasonal sampled geopredictive seasonal district-level malarial risk model hyperendemic transmission 

oriented  covariate coefficient measurement values, it would render the same result as if it were applied once (i.e., 

idempotence). Though abstract, this definition of "projection would formalize and generalizes the idea of graphical 

projection in a robust geopredictive seasonal district-level malarial risk model.  A malarialogist/experimenter can 

also consider the effect of a projection on a district-level related geometrical object (e.g., malarial mosquito larval 

habitat) by examining the effect of the projection on the georeferenced points in the object. For example, a function 

may be employed to map the district level seasonal sampled habitat point (x, y, z) in three-dimensional space R
3
 to 

the point (x, y, 0) is a projection onto the x–y plane. This function may be represented by the 

matrix the action of this matrix on an arbitrary vector then would be 
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( see Meyer 2000). To see that P is indeed a projection, i.e., P = P
2
, the 

malariologist/experimenter could then compute:  

 

Thereafter, by letting  W be a finite dimensional vector space in the geopredictive seasonal district-level malarial 

risk model the subspaces U and V would be  the range and kernel of P respectively. Then P in the risk model would 

have the following basic properties: P would be the identity operator I on U: , a direct 

sum W = U ⊕ V could be achieved, every vector x in W may be decomposed uniquely as x = u + v with  

and , where u is in U and v is in V and P is idempotent and satisfies P
2
 = P.  

The range and kernel of a projection would be complementary in the predictive seasonal district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented geopredictive autoregressive 

malarial risk model residual forecasts as P and Q would be equal to I − P. The operator Q is a projection and the 

range and kernel of P become the kernel and range of Q and vice-versa (Cressie 1993).  Thus, P would be a 

projection along V onto U (i.e., kernel/range) and Q would be a projection along U onto V in the predictive seasonal 

district-level malaria-related risk model In infinite dimensional vector spaces spectrum of a projection  in the risk 

model then would be contained in {0, 1}, as . Only 0 and 1 can be an 

eigenvalue of a projection (Griffith 2003). The corresponding eigenspaces in the predictive seasonal district-level 

malarial risk model would then respectively be the kernel and range of the projection.  

Decomposition of a vector space geopredictive seasonal district-level malarial risk model into direct sums is not 

unique in general. Therefore, given a subspace V, in general there are many projections whose range (or kernel) is 

V.If a projection is nontrivial in the risk model  it  would then have a minimal polynomial [e.g. 

],  which would factor into the roots, and thus P would be  diagonalizable in the 

residual forecasts targeting the statistically significant explanatory field/clinical/ geopredictive autoregressive 

hyperendemic  transmission oriented  covariate coefficients. When the vector space W has an inner product (e.g., 

Hilbert space) the concept of orthogonality can be used in the district-level geopredictive malarial risk model  

A Hilbert space is a vector space with an inner product such that the norm defined by  turns 

into a complete metric space(Griffith 2003). If the metric defined by the norm is not complete, then is instead 

known as an inner product space. Examples of finite-dimensional Hilbert spaces include :. The real numbers with 

the vector dot product of and  the complex numbers with the vector dot product of and the 

complex conjugate of  . An example of an infinite-dimensional Hilbert space is , whereby the set of all 

functions  issuch that the integral of over the whole real line is finite. In this case, the inner product is 

  

Importantly, an orthogonal projection is a projection for which the range U and the null space V are orthogonal 

subspaces (Cressie 1993). A projection is orthogonal in a robust geopredictive seasonal district-level malarial risk 

model if ,and only if, it is self-adjoint( Jacob et al. 2009d). Using the self-adjoint and idempotent properties of P, for 

any x and y in W in the risk model then would reflect Px ∈ U, y − Py ∈ V, 

and  where 
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is the inner product associated with W. Therefore, Px and y − Py would be orthogonal in the residual forecasts 

statistically targeting the important field/clinical/remote sampled malaria-related explanatory hyperendemic 

transmission oriented predictive autoregressive covariate coefficients. Further, for quantitating finite dimensional 

complex or real vector spaces in a predictive seasonal district-level malarial risk model, the standard inner product 

can be substituted for .A simple case occurs when the orthogonal projection is onto a line (Meyers 2000). If u 

is a unit vector on the line in the risk model , then the projection could be  given by This operator 

would leave u invariant in the model and it would annihilate all vectors orthogonal to u, proving that it is indeed the 

orthogonal projection onto the line containing u in the residual forecasts. A simple way to see this is to consider an 

arbitrary vector as the sum of a component on the line (i.e. the projected vector) and another perpendicular to it, 

. Applying projection to the predictive seasonal district-level malarial risk model   in R would 

then render by the properties of the dot product of 

parallel and perpendicular vectors. 

In R the dot product, or scalar product (or sometimes inner product in the context of Euclidean space), is an 

algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors) and returns a 

single number. This operation can be defined either algebraically or geometrically. Algebraically, it is the sum of the 

products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the 

magnitudes of the two vectors and the cosine of the angle between them. The name "dot product" is derived from the 

centered dot " · " that is often used to designate this operation; the alternative name "scalar product" emphasizes the 

scalar (rather than vectorial) nature of the result. In three-dimensional space, the dot product contrasts with the cross 

product of two vectors, which produces a pseudovector as the result.  

The dot product in a robust district-level field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented predictive autoregressive malarial risk model thus would be directly related to the cosine of the angle 

between two vectors in Euclidean space of any number of dimensions. The dot product of two vectors a = [a1, a2, ..., 

an] and b = [b1, b2, ..., bn] would then be  defined as: 

where Σ denotes summation notation and n is the 

dimension of the vector space. For instance, in three-dimensional space, the dot product of vectors [1, 3, −5] and [4, 

−2, −1] in a robust predictive district level time series model would be 

 

In Euclidean space, a Euclidean vector is a geometrical object that possesses both a magnitude and a direction. A 

vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction the arrow points. As 

such, the magnitude of a vector A can be denoted by . The dot product of two Euclidean vectors A and B 

would then be b defined by where θ is the angle between A and B. In particular, 

if A and B are orthogonal in the risk model, then the angle between them is 90° and At the other 

extreme, if they are codirectional, then the angle between them is 0° and This implies that 

the dot product of a vector A by itself is which gives the formula for 

the Euclidean length of the vector. 

The scalar projection or scalar component of a Euclidean vector in a geopredictive district-level malarial 

risk model could then be quantitated as  A in the direction of a Euclidean vector B is given 

by where θ is the angle between A and B between the estimators in geospace. In terms of the 

geometric definition of the dot product, can then be rewritten where is the unit 
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vector in the direction of B.  The dot product would  thus would be characterized 

geometrically by The dot product, defined in this manner would be  

homogeneous under scaling therefatre for each sampled explanatory hyperendemic transmission oriented district-

level field/clinical/remote sampled malaria-related predictive autoregressive predictor variable, meaning that for any 

scalar α,  The dot product would  also then satisfy the 

distributive law, meaning that As a consequence, if are 

the standard basis vectors in ,in a geopredictive district-level  malarial risk model output then 

writing and would render  

which is precisely the algebraic definition of the dot product. 

More generally, the same identity would holds when ei is replaced by any orthonormal basis in the risk model 

residual forecasts. 

The dot product would thus fulfill the following properties if a, b, and c are real vectors in the predictive district 

level malarial risk model and r is a scalar. The commutative (i.e., )would follow from the 

definition    while the distributive features  

would be  illustrated over  vector addition:  Further, the Bilinear and , Scalar 

multiplication[i.e.,  ]  and Orthogonal data attributes could be quantitated. 

Two non-zero vectors a and b are orthogonal if and only if a ⋅ b = 0 (Griffith 2003). Unlike multiplication of 

ordinary numbers, where if ab = ac, then b always equals c unless a is zero, the dot product does not obey the 

cancellation law: If a ⋅ b = a ⋅ c and a ≠ 0, then a malarialogist/experimenter  could write: a ⋅ (b − c) = 0 by the 

distributive law whereby  the result would signify whether  a is perpendicular to (b − c), which would allow (b − c) 

≠ 0, and therefore b ≠ c. If  a and b are functions, then the derivative (denoted by a prime ′) of a ⋅ b is a′ ⋅ b + a ⋅ b′ 

(Cressie 1993) Triangle with vector edges a and b, separated by angle θ. Thus, given two vectors a and b separated 

by angle θ (see image right), they form a triangle with a third side c = a − b. The dot product of this with itself is: 

 

This formula can be generalized to orthogonal projections on a subspace of arbitrary dimension in a geopredictive 

district-level malarial related risk model. Let u1, ..., uk be an orthonormal basis of the subspace U, and let A denote 

the n-by-k matrix whose columns are u1, ..., uk.then the projection is given by
 
 (Griffith 2003) which 
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for district level malarial predictive modeling can be rewritten as The matrix A
T
 is the 

partial isometry that vanishes on the orthogonal complement of U and A is the isometry that embeds U into the 

underlying vector space (Cressie 1993). The range of PA  would therefore be the final space of A in a robust 

predictive  malarial model  It is also clear that A
T
A would then be the identity operator on U in the residual forecasts 

targeting the statistically important explanatory hyperendemic transmission oriented covariate coefficients  The 

orthonormality condition can also be dropped in the forecasts. If u1, ..., uk is a (not necessarily orthonormal) basis, 

and A is the matrix with these vectors as columns, then the projection is (Griffith 

2003) 

Interestingly, the matrix A would still embed U into the underlying vector space in the geopredictive seasonal 

malarial-related risk model but it would no longer be isometric. The matrix (A
T
A)

−1
 is a "normalizing factor" that 

recovers the norm. For example, the rank-1 operator uu
T
 would not be a projection if ||u|| ≠ 1 in a robust 

geopredictive malarial risk model residual forecast. After dividing by u
T
u = ||u||

2
, a malarialogist/experimenter would 

then obtain the projection u(u
T
u)

−1
u

T
 onto the subspace spanned by u. When the range space of the projection is 

generated by a frame (i.e. the number of generators is greater than its dimension), the formula for the projection 

would  take the form . Here stands for the Moore–Penrose pseudoinverse. This is 

just one of many ways to construct the projection operator for a geopredictive district level malaria-related risk 

model.  Further, if a matrix is non-singular and A
T
 B = 0 (i.e., B is the null space matrix of A) in the residual 

forecast then the following holds:  On the other hand, if the 

orthogonal condition is enhanced to A
T
 W B = A

T
 W

T
 B = 0 with W being non-singular in the residual forecasts, then  

the following holds: All these formulas would hold for complex 

inner product spaces in the geopredictive malarial-related model provided that the conjugate transpose is used 

instead of the transpose. 

The term oblique projections is sometimes used to refer to non-orthogonal projections. These projections are also 

used to represent spatial figures in two-dimensional drawings (see Griffith 2003), though not as frequently as 

orthogonal projections. Oblique projections are defined by their range and null space. A formula for the matrix 

representing the projection with a given range and null space can be found as follows. Thus if a 

malarialogist/experimenter lets the vectors u1, ..., uk form a basis for the range of the projection in the risk model and 

assemble these vectors in the n-by-k matrix A the range and the null space would be complementary spaces, so the 

null space has a dimension n − k. It follows then that the orthogonal complement of the null space in the model 

would then have dimension k. There are by letting v1, ..., vk form a basis for the orthogonal complement of the null 

space in the residual forecast of the projection, and assembling  these vectors in the matrix B. the projection could be  

defined by This expression would generalize the formula for orthogonal projections 

then for a robust geopredictive malaria-related risk model.  

It is important to remember that any projection P = P
2
 on a vector space of dimension d over a field is a 

diagonalizable matrix, since its minimal polynomial is x
2
 – x normally splits into distinct linear factors. Thus, there 

exists a basis in which P has the form where r is the rank of P. Here Ir is the identity matrix of 

size r, and 0d−r is the zero matrix of size d − r. If the vector space is complex and equipped with an inner product, 

then there is an orthonormal basis in which the matrix of P 

is where ζ1 ≥ ζ2 ≥ ... ≥ ζk > 0. The integers k, s, m and the 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive 

autoregressive explanatory covariate coefficient measurement values  then would be uniquely determined. Note 

that since 2k + s + m = d (Cressie 1993) the factor Im ⊕ 0s would correspond to the maximal invariant subspace in 
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the risk model on which P acts as an orthogonal projection (so that P itself is orthogonal if and only if k = 0) and the 

ζi-blocks correspond to the oblique components. 

Interestingly, when the underlying vector space X is a (not necessarily finite-dimensional) normed vector space in R 

analytic questions, irrelevant in the finite-dimensional case, need to be considered. Assume now X is a Banach 

space. A given direct sum decomposition of X into complementary subspaces in a geopredictive malaria-related 

model would then specify a projection, and vice versa. If X is the direct sum X = U ⊕ V, then the operator defined 

by P(u + v) = u is still a projection with range U and kernel V. It is also clear that P
2
 = P. Conversely, if P is 

projection on X, i.e. P
2
 = P in the risk model then it would be easily verified that (I − P)

 2
 = (I − P). In other words, 

(I − P) would also be a projection in a robust predictive malaria-related risk model. The relation I = P + (I − P) 

implies X is the direct sum Ran (P) ⊕ Ran (I − P) (Griffith 2003). 

However, in contrast to the finite-dimensional case, projections need not be continuous in general in a robust 

geopredictive district level malarial risk model. If a subspace U of X is not closed in the norm topology, then 

projection onto U would not be continuous in the derivatives rendered from the model output. In other words, the 

range of a continuous projection P must be a closed subspace in order to attain statistical significance of the sampled 

explanatory hyperendemic transmission oriented covariate coefficients. Further, the kernel of a continuous 

projection would be closed. Thus a continuous projection in a robust predictive malarial district-level model P would 

render a decomposition of X into two complementary closed subspaces: X = Ran(P) ⊕ Ker(P) = Ran(P) ⊕ Ran(I − 

P) in the resdiual forecasts. 

The converse will also hold in a geopredictive malaria-related district level risk model if an additional assumption is 

employed. For example, suppose U is a closed subspace of X in the district level risk model  If there exists a closed 

subspace V such that X = U ⊕ V, then the projection P with range U and kernel V would then be  continuous. This 

follows from the closed graph theorem. Further, suppose xn → x and Pxn → y in the model residual forecasts. The 

malarialogist/experimenter then would have to show Px = y. Since U is closed and {Pxn} ⊂ U, y lies in U, i.e. Py = 

y. then, xn − Pxn = (I − P)xn → x − y. Because V  would then be closed and {(I − P)xn} ⊂ V, h x − y ∈ V, (i.e. P(x − y) 

= Px − Py = Px − y = 0) would then be rendered by the risk model. 

The above argument makes use of the assumption that both U and V would be closed in the geopredictive malaria-

related. district-level model. In general, given a closed subspace U, there need not exist a complementary closed 

subspace V, although for Hilbert spaces this can always be done by taking the orthogonal complement. For Banach 

spaces, a one-dimensional subspace always has a closed complementary subspace. This is an immediate 

consequence of Hahn–Banach theorem whereby if a malarialogist/experimenter lets U be the linear span of u then  

there  would exist a bounded linear functional Φ such that φ(u) = 1. The operator P(x) = φ(x)u would then satisfy P
2
 

= P in the residual forecasts. Boundedness of φ implies continuity of P and therefore Ker(P) = Ran(I − P) is a closed 

complementary subspace of U.(Cressie 1993). However, every continuous projection on a Banach space in the risk 

model would be an open mapping source. That is, the district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented predictive autoregressive risk model would have the only matrix such that (a) 

when multiplied by itself the result is itself, and (b) all of its rows, and all of its columns would be  linearly 

independent. The principal square root of an identity matrix is itself, and this is its only positive definite square 

root(Griffith 2003).Further, every identity matrix in a malarial predictive risk model with at least two rows and 

columns has an infinitude of symmetric square r( see Jacob et al. 2009d), 

The equivalent VAR(1) geopredictive seasonal malarial-related risk model would then form a more convenient for 

analytical derivations and allows more compact residual forecasted  statements. Meanwhile a A structural VAR with 

p lags predictive seasonal malarial-related risk model could be described by 

 where c0 is a k × 1 vector of constants, 

Bi is a k × k matrix (for every i = 0, ..., p) and εt is a k × 1 vector of error terms. The main diagonal terms of the B0 

matrix (i.e., the coefficients on the i
th

 variable in the i
th

 equation) would then be scaled to 1. The error terms εt (i.e., 

structural shocks) would then be satisfied in the model with the particularity that all the elements off the main 

diagonal of the covariance matrix  would be  zero. That is, the structural shocks in the predictive 
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district-level malarial risk model would be uncorrelated. For example, a two sampled district level hyperendemic 

transmission oriented variable structural VAR(1)  could be constructed using: 

where

that is, the variances of the structural shocks  denoted  are (i = 1, 

2) and the covariance is .Writing the first equation explicitly and passing y2,t to the right hand 

side a malarialogist/experimenter would  obtain 

 from the regressed emperical sampled 

datset. 

Note that y2,t can have a contemporaneous effect on y1,t if B0;1,2 is not zero. This is different from the case when B0 is 

the identity matrix (all off-diagonal elements are zero — the case in the initial definition), when y2,t can impact 

directly y1,t+1 and subsequent future values, but not y1,t. Because of the parameter identification problem, OLS 

estimation of the structural VAR in a predictive malaria-related district model would yield inconsistent 

geoparameter estimates. This problem can be overcome by rewriting the VAR in reduced form. As such, if the joint 

dynamics of a set of hyperendemic transmission oriented variables are represented by a VAR model, then the 

structural form would be a depiction of the underlying, "structural", sampled estimators relationships.  A key feature 

of the structural form which may  make it the preferred candidate to represent the underlying relations in a robust 

predictive malaria-related district level risk model is that the error terms would not be correlated. The structural 

shocks which drive the dynamics of the variables would then be assumed to be independent, which implies zero 

correlation between error terms as a desired property. This is helpful for separating out the effects of unrelated 

influences in the VAR derived malaria-related risk model.  

Further by premultiplying the structural VAR in R with the inverse of B0 

 and 

denoting  a malarialogist/experimenter would 

obtain the pth order reduced VAR  Note, that 

in the reduced form all right hand side district-level field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented predictive autoregressive oriented variables would be predetermined at time t in the model. As 

there are no endogenous variables on the right hand side, no hyperendemic transmission oriented variable would 

have a direct contemporaneous effect on other sampled variables in the risk model. However, the error terms in the 

reduced VAR would be composites of the structural shocks et = B0
−1

εt. Thus, the occurrence of one structural shock 

εi,t can potentially lead to the occurrence of shocks in all error terms ej,t, in the risk model thus creating 

contemporaneous movement in all endogenous variables. Consequently, the covariance matrix of the reduced 

VAR  can have non-zero off-diagonal 

elements, thus allowing non-zero correlation between error terms.  

The VAR model in R has proven to be especially useful for describing the dynamic behavior of economic and 

financial time series and for forecasting. It often provides superior forecasts to those from univariate time series 

models and elaborate theory-based simultaneous equations models. Forecasts from VAR models are quite flexible 

because they can be made conditional on the potential future paths of specified variables in the model (Cressie 

1993).In addition to data description and forecasting, the ARIMA model may also be used for structural inference 

and policy analysis for laying down the foundation of an integrated vector management program. In structural 

analysis, certain assumptions about the causal structure of the data under investigation can then be imposed, and the 

resulting causal impacts of unexpected shocks or innovations to specified variables on the variables in the model can 

be summarized. These causal impacts are usually summarized with impulse response functions and forecast error 

variance decompositions.  
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The structure of the package vars and its implementation of vector autoregressive-structural vector autoregressive- 

and structural vector error correction models can also be generated in R. In addition to the three cornerstone 

functions VAR(), SVAR() and SVEC() for estimating such models, functions for diagnostic testing, estimation of a 

restricted models, prediction, causality analysis, impulse response analysis and forecast error variance 

decomposition can be provided too. It is further possible to convert vector error correction models in R. into their 

level VAR representation for the seasonal predictive district -level malarial model residual forecasts  

However, R has a steep learning curve |.  R is not so easy to use for the novice. There are several simple-to 

use graphical user interfaces (GUIs) for R that encompass point and-click interactions, but they generally do not 

have the polish of the commercial offerings. Further, documentation is sometimes patchy and terse, and 

impenetrable to the non-statisticians. However, some very high-standard books are increasingly plugging the 

documentation gaps. The quality of some packages is less than perfect, although if a package is useful to many 

malarialogists/experimenters, it will quickly evolve into a very robust product through collaborative efforts. Further, 

many R commands give little thought to memory management, and so R can very quickly consume all available 

memory. This can be a restriction when doing data mining for constructing a robust predictive malarial related risk 

model.  

 Conversely, the SAS/GIS procedure PROC REG can be used instead to obtain generalized least squares (GLS) 

estimates to regress log- transformed seasonal district-level malarial data. Within PROC REG the MODEL 

statement option DW produces the Durbin-Watson statistic. SAS also contains a powerful procedure, PROC 

AUTOREG, documented in the SAS/ETS User's Guide for estimating linear regression models with autocorrelation. 

A PROC IML appendix can then be provided to illustrate any iterative estimation procedures, (e.g., the 

CochraneOrcutt technique). 

Cochrane–Orcutt estimation is a procedure which adjusts a linear model for serial correlation in the error term 

Consider the geopredictive seasonal district-level malarial risk  model where is the 

value of the dependent variable of interest at time t( e.g., total district larval density count), is a column vector of 

coefficients to be estimated, is a row vector of explanatory variables at time t, and is the error term at time t. If 

it is found via the Durbin–Watson statistic that the error term is serially correlated over time in the risk model, then 

standard statistical inference as normally applied to regressions would be  invalid because standard errors are 

estimated with bias ( see Homer and Lemeshew 2000). To avoid this problem, the residual forecasts rendered from 

the geopredictive district-level risk model must be adequately modeled. If the process generating the residual 

forecasts  is found to be a stationary first-order autoregressive structure, , with 

the errors { } being white noise, then the Cochrane–Orcutt procedure can be used to transform the predictive 

seasonal district-level malarial risk  model by taking a quasi-

difference: In this specification the error terms 

would be white noise, so statistical inference would be valid. Then the sum of squared residuals (i.e.,the sum of 

squared estimates of ) would be  minimized in the risk model residual forecasts with respect to , 

conditional on . If is not known, then it could be estimated by first regressing the untransformed model and 

obtaining the residuals { }, and regressing on , leading to an estimate of  for making the transformed 

regression above feasible. (Note that one data point, the first, is lost in this regression.) This procedure of 

autoregressing estimated predictive seasonal district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented autoregressive model residuals can then be conducted parsimoniously once the 

resulting value of  is used in the transformed y regression, or the residuals of the residual autoregression which can 

themselves be autoregressed in consecutive steps until no substantial change in the estimated value of is observed. 

Alternatively, White (1980) proposed a consistent estimator for the variance-covariance matrix of the asymptotic 

distribution of the OLS estimator, which would validate the use of hypothesis testing employing OLS estimators 

under heteroscedasticity in STATA. The test is implemented in STATA which is a general-purpose statistical 

software package which includes data management, statistical analysis, graphics, simulations, and custom 
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programming. There are three major builds of each version of STATA: 1) STATA/MP for multiprocessor computers 

(including dual-core and multicore processors), 2) STATA/SE for large databases; and 3) STATA/IC, which is the 

standard version (www.stata.com). STATA emphasizes a command-line interface which also facilitates replicable 

analyses. Recently, STATA has included a graphical user interface which uses menus and dialog boxes to give 

access to nearly all built-in commands. This could then generate codes in a seasonal geopredictive malarial-related 

risk model which can then be displayed, easing the transition to the command line interface and more flexible 

scripting language for robust residually forecasted district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented geopredictive autoregressive uncertainty modeling. The dataset could thereafter 

be viewed or edited in a spreadsheet format. STATA can then import error prone district-level malarial data 

attributes  in a variety of formats including  ASCII data formats such as CSV or databank formats and spreadsheet 

formats including various Excel formats, if so desired. 

Further, STATA proprietary file formats are platform independent, so malarialogists/experimenters employing 

different operating systems can easily exchange residually forecasted district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented predictive autoregressive uncertainty estimators. Additionally, 

every version of STATA can read all older sampled district-level dataset formats, and can even write both the 

current and most recent previous dataset formats, using the saveold command. STATA can also read and write SAS 

XPORT format datasets natively, using the fdause and fdasave commands. 

filename.xpt, which contains the Since White‘s test would involve regressing the squared error term from the OLS 

regression on the independent variables in the malarial regression equation in STATA, the R
 
squared values renderd 

from that regression would be multiplied by n (i.e. sampled district-level hyperendemic transmission-oriented 

parameter estimators). The result then would be a test statistics distributed approximately as chi-squared. To 

determine which georeferenced variable causes the residual forecasts to be heteroskedastic in the empirical-sampled 

spatiotemporal dataset, a malarialogist/experimenter  can perform White‘s test manually in STATA; thus, regressing 

each X on the squared error or, by simply plotting the squared error versus each independent variable.  

Note, that this solution applies only to large sampled district-level empirical datasets. For small malarial-related 

samples, bootstrapped standard errors may be preferable. For example, a malarialogist/experimenter can utilize 

STATA margins and marginsplot commands for calculation and presentation of results from seasonally regressed 

malaria-related hyperendemic transmission-oriented explanatory covariate coefficient datasets. In particular, through 

use of the margins plot command, the regressed explanatory covariates coefficients and their residual forecasts can 

be graphically visualized.  STATA can then proceed to more-complicated district-level models where the effects of 

the independent variables may be nonlinear. After seasonally  quantitating nonlinear effects in the empirical district-

level malaria-related datasets,  STATA can then render significance levels in the regressed district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive autoregressive 

variables  using both standard polynomial terms (i.e., squares and cubes of variables) as well as fractional 

polynomial models. Thereafter, the software can investigate the performance of these procedures with particular 

regard to over fitting. If there is excess Type I error rates in the residually forecasted uncertainty estimators this may 

be then quantitated. Modifications, χ
2
or F approximations to likelihood ratio statistics may also be compared to 

fractional district-level malaria-related polynomial models. In all cases, the margins plot command in STATA can 

be employed to illustrate the effect that changing an independent variable (weekly rainfall measure) has on the 

dependent variable (district-level prevalence rate) in a predictive malarial regression-based risk model framework. 

Piecewise-linear models may be then presented as well; these are linear models in which the slope or intercept is 

allowed to change depending on the range of an independent variable. Additionally, STATA uses the contrast 

command when discussing categorical variables which can allow a malarialogist/experimenter to contrast 

predictions made for various levels of any sampled categorical variable.  

Further, STATA can compute heteroskedasticity-consistent estimates of the OLS coefficient covariance matrix and 

then perform heteroskedasticity-robust hypothesis tests based on OLS district-level regressed seasonal-sampled 

malarial-related hyperendemic transmission-oriented explanatory coefficient estimates.  For example, STATA can 

perform the Breusch-Pagan-Koenker (BPK) LM tests for mixed heteroskedastic errors in linear regression model. In 

statistics, the Breusch–Pagan test is used to test for heteroscedasticity in a linear regression model. The test evaluates 

whether the estimated variance of the residuals from a regression are dependent on the values of the independent 
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variables. For instance, suppose a malarialogist/experimenter estimates a seasonal predictive regression model 

employing y=β+β1 X+μ and obtains from this fitted model a set of district-level malaria –related hyperendemic 

transmission-oriented explanatory covariate coefficients measurement measurement values. Ordinary least squares 

would constrain these  values so that their mean is 0 and so, given the assumption that their variance does not 

depend on the independent variables, an estimate of this variance can be obtained from the average of the squared 

district-level explanatory covariate coefficients measurement values. If the assumption is not held to be true, a 

simple model might be that the variance is linearly related to independent variables. Such a district-level 

geopredictive malarial risk model can be examined by regressing the squared residuals on the independent variables, 

employing a regression equation of the form  which is the basis of the Breach–Pagan test. If 

an F-test confirms that the independent variables and are jointly significant then the null hypothesis of 

homoscedasticity can be rejected. The Breach–Pagan test tests for conditional heteroscedasticity is a chi-squared test 

and the test statistic is nχ
2
 with k degrees of freedom (Rao 1973). If the Breusch–Pagan test reveals that that there is 

conditional heteroscedasticity in the residual forecasted hyperendemic transmission-oriented explanatory covariate 

coefficients they may be corrected by employing robust standard errors in STATA. 

To identify an appropriate seasonal geopredictive ARIMA model, for an empirical seasonal-sampled dataset of 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive 

autoregressive covariate coefficients, a malarialogist/experimenter may  begin by identifying the order(s) of 

differencing in STATA needing to stationarize the series and to  remove the gross features of seasonality, perhaps in 

conjunction with a variance-stabilizing transformation such as logging or deflating. STATA is a general-purpose 

statistical software package created for data management, which contain analytical tools for statistical analysis, 

graphics, simulations, and custom programming (www.stata.com). In seasonal predictive district-level malaria-

related risk model construction, a variance-stabilizing transformation is a data transformation that is specifically 

chosen either to simplify considerations in graphical exploratory data analysis or, to allow the application of simple 

regression or other analysis of variance techniques (see  Jacob et al. 2009d). In applied statistics, a variance-

stabilizing transformation is a data transformation that is specifically chosen either to simplify considerations in 

graphical exploratory data analysis or, to allow the application of simple regression-based or analysis of variance 

techniques (Hosmer and Lemeshew 2000).
 
In fact, the easiest way to think of STATA constructed seasonal ARIMA 

–related district-level malarial predictive model is as fine-tuned versions of random-walk and random-trend models: 

the fine-tuning consists of adding lags of the differenced series and/or lags of the forecast errors to the predictive 

equation to remove any last traces of serial correlation in the residual forecast errors.  Lags of the differenced series 

appearing in a district-level malaria-related regression-based forecasting equation could then be categorized as 

"auto-regressive" terms in STATA while lags of the forecast errors would be the "moving average" terms.   

A malarialogist /experimenter may employ STATA margins and margins plot commands for calculating residual 

forecast error from the empirical   dataset of regressed district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented predictive autoregressive explanatory covariate coefficients. In particular, 

through use of the marginsplot command, the regressed explanatory covariates coefficients and their residually 

forecasted uncertainty estimators can be graphically visualized.  STATA can then proceed to more-complicated 

district-level models where the effects of the seasonal-sampled independent variables (e.g., district-level monthly 

rainfall measurements) may be nonlinear. After seasonally quantitating nonlinear effects in the empirical district-

level malaria-related empirical datasets, STATA can render significance levels in the regressed hyperendemic 

transmission-oriented explanatory covariate coefficients employing both standard polynomial terms (i.e., squares 

and cubes of variables) as well as fractional polynomial models. Thereafter, the software can investigate the 

performance of these procedures with particular regard to over fitting. If there is excess Type I error rates, for 

example, in the residual forecasts defining the district-level hyperendemic transmission-oriented explanatory 

covariate coefficients, these variables may be further quantitated. For example, modifications, χ
2
or F approximations 

to likelihood ratio statistics may be compared to fractional polynomial model outputs. In all cases, the marginsplot 

command in STATA can illustrate the effect of changing every single seasonal-sampled malaria-related independent 

variable in a regression-based robust predictive hyperendemic transmission-oriented risk model on a district-level 

dependent variable (e.g., prevalence rates). Piecewise-linear models may then be constructed which are basically 

linear models in which the slope or intercept is allowed to change depending on the range of an independent 

variables. The contrast command in STATA would then allow a malarialogist or experimenter to easily contrast 

residuals forecasts made from various levels of the seasonal-sampled categorical variables.  
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   Further, since seasonal ARIMA–related geopredictive models are, in theory, one most general class of models for 

forecasting a time series dataset, stationaries can be quantitated in STATA by transformations such as differencing 

and logging. By so doing, robust residual forecasts from vigorously regressed seasonal-sampled hyperendemic 

transmission-oriented district-level field/clinical/remote sampled malaria-related predictive autoregressive 

explanatory covariate coefficients can be generated. Logging is a series often has an effect very similar to deflating: 

it dampens exponential growth patterns and reduces heteroscedasticity(Cressie 1993). In statistics, a collection of 

random variables is heteroskedastic if there are sub-populations that have different variabilities (Hosmer and 

Lemeshew 2000).The possible existence of heteroscedasticity  is a major concern in the application of regression 

analysis for geopredictive seasonal  malarial uncertainty risk  mode construction including the analysis of variance, 

as the presence of heteroscedasticity can invalidate  tests of significance that assume that the modeling uncertainties 

are uncorrelated and normally distributed and that their variances do not vary with the effects being modeled (see 

Jacob et al. 2011c, Jacob et al. 2009d). Logging is not exactly the same as deflating--it does not eliminate an upward 

trend in the data--but it can straighten the trend out so that it can be better fitted by a linear model.  Thus, if a 

malarialogist/experimenter logs the seasonal-sampled district-level data and then fits a model that implicitly or 

explicitly uses differencing  for ARIMA-malarial related random walk, exponential smoothing and predictive model 

construction, then it would be  redundant to deflate by any district-level sampled index, as long as the rate of change 

is slow (i.e. the percentage change measured in  the sampled explanatory covariate coefficients is nearly the same as 

the percentage change in the residual uncertainty forecasts). For instance , since LOG function in STATA have the 

defining property that LOG (X*Y) = LOG(X) + LOG(Y), the logarithm of a product in a predictive seasonal-

sampled district-level malarial-related risk model would equal the sum of the logarithms. Therefore, logging the 

seasonal-sampled explanatory hyperendemic transmission-oriented covariate coefficients would convert 

multiplicative relationships to additive relationships in the residual district-level uncertainty forecasts while 

simultaneously converting exponential malaria-related trends to linear trends. 

 Thereafter, by taking logarithms of the seasonal-sampled district-level predictive variables that are multiplicatively 

related and/or growing exponentially over time, a malarialogist/experimenter may be then able to explain and 

quantitate any erratic error behavior within an empirical  dataset of linear district-level model residual forecasts. For 

instance, a graph of a seasonally regressed empirical dataset of  log-transformed district-level parameter estimators  

may be used to convert the exponential malaria related prevalence district-level change pattern to a linear growth 

pattern, while simultaneously converting the multiplicative (i.e., proportional-variance) seasonal pattern to an 

additive (i.e., constant-variance) seasonal pattern in an uncertainty risk model framework. The logarithm 

transformation may then be applied only to the explanatory hyperendemic transmission-oriented district-level error 

prone covariate coefficients measurement values which would of course be strictly positive. The log of zero or a 

negative number cannot be performed (Rao 1973). Logging the seasonal-sampled district-level predictive malarial  

data before fitting a random walk model would  then yield a geometric random walk—(i.e., a random walk with 

geometric) rather than just a linear growth projection of the sampled hyperendemic transmission-oriented 

explanatory covariate coefficients. A geometric random walk is the default forecasting model that is commonly used 

for data analyses (Cressie 1993). 

 Additionally, since there are two kinds of standardized logarithms in standard in STATA (e.g., "natural" logarithms 

and base-10 logarithms) it would be easy to test for any uncertainty in the residual hyperendemic transmission-

oriented forecasts. Log transformation is often used to convert time series that are nonstationary in predictive 

district-level malaria-related modeling with respect to the innovation variance in a stationary time series (Jacob et al. 

2009d). The usual approach is to take the log of the series in a DATA step and then apply it in a STATA–related 

ARIMA to transform the data. A DATA step in STATA would then transform the forecasts of the logs back to the 

original units of measurements where the confidence limits would also be transformed by employing the exponential 

function.  As one alternative, a malarialogist/experimenter may simply exponenate the residually forecasted district-

level field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive autoregressive 

estimators. This procedure would then render a forecast for the median of the series, but the antilog of the forecast 

log series may underpredict the mean of the original series. As such,  to predict the expected value of the series, a 

malarialogist/experimenter would then just simply  spatiotemporally quantitate the standard error of the forecast 

employing an AR(2) model to determine the log of a series Y. By so doing, the logarithm of a product in a predictive 

malarial-related seasonal risk model would then be i the sum of the logarithms of the numbers being multiplied. By 
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so doing, the logarithm of the ratio of any two district sampled explanatory hyperendemic transmission-oriented 

covariate coefficients would simply be the difference of the logarithms.  

The logarithm of the p-th power of a sampled uncertainty explanatory covariate coefficient would thereafter  be p 

times the logarithm of the covariate coefficient itself. In other words the logarithm of a p-th root would be the 

logarithm of the explanatory hyperendemic transmission oriented malaria-relayed district-level covariate coefficient 

divided by p in the model. In Statagraphics, the LOG function would then be the natural log, and its inverse which 

would be the EXP function. (EXP(Y) is the natural logarithm base, 2.718..., raised to the Yth power while the base-

10 logarithm and its inverse would be LOG10 and EXP10 in Statgraphics (www.stata.com).   

Interestingly, in Excel and many hand-held calculators, the natural logarithm function is written as LN instead, and 

LOG stands for base-10 logarithms. Regardless, when logarithmic transformations in STATA are applied to 

geopredictive malarial seasonal risk model exercised in conjunction with differencing and logging, the residual 

forecasts targeting the hyperendemic transmission-oriented district-level uncertainty explanatory covariate 

coefficients will convert absolute differences into relative (i.e., percentage) differences. Thus, the series DIFF 

(LOG(Y)) would represent the percentage change in Y from period to period in the district-level predictive risk 

model. Strictly speaking, the percentage change in Y at period t in the model would thereafter be defined as (Y(t)-

Y(t-1))/Y(t-1), which would be approximately equal to LOG(Y(t)) - LOG(Y(t-1)), but the approximation would be  

almost exact,  if the percentage change is small. In STATA  graphics terms, this means that DIFF(Y)/LAG(Y,1) 

would be  virtually identical to DIFF(LOG(Y)). For instance, for determining a robust residual product from a 

predictive malarial-related district-level risk model, a formula may be written as  

     or a quotient applying [e.g., 

] .The logarithm log(x) can then  be computed from the logarithms of 

x and b with respect to an arbitrary base k using the following formula:  in  any district- level 

geopredictive spatiotemporal malarial risk –based uncertainty model 

Geomathematically speaking, thereafter, DIFF (LOG(Y/CPI)) in the residual forecasts would be nearly identical 

DIFF (LOG(Y)): the only difference between the two is a very faint amount of noise due to fluctuations in the 

inflation rate. Further, to computate a natural logarithm to base-10 logarithm in a robust predictive seasonal district-

level risk model, a malarialogist/experimenter would simply divide the residual forecasted hyperendemic 

transmission explanatory covariate coefficient measurement values by the conversion factor 2.303 in STATA 

(www.stata.com). For example, calculating Log (100) in a district-level seasonal model of malaria-related empirical 

repressors could yield Ln (100) = 4.60517, then Log (100) = Ln (100)/2.303 = 4.60517/2.303 = 1.9996. Thereafter, 

by calculating Log (1.6210^-4), the residual forecasts would yield Ln (1.6210^-4) = -8.728 where Log (1.6210^-4) = 

Ln (1.6210^-4)/2.303 = -8.728/2.303 = -3.790.  

Conversely, to convert a natural antilog in a geopredictive district-level malarial uncertainty risk model to a base=10 

antilog, the malarialogist/experimenter would simply multiply by the conversion factor 2.303 before tabulating the 

natural antilog. For instance, to calculate the base-10 antilog of -3 a malarialogist/experimenter would have to find 

InvLn (-3*2.303) = InvLn (-6.909) in the residually forecasted estimators for identifying robust filed/clinical/remote 

hyperendemic transmission-oriented uncertainty explanatory covariate coefficients.  Then Antilog (-3) = InvLn (-

6.909) = 9.9910^-4.) For instance , to calculate the base-10 antilog of -8.45 in a seasonal  predictive malarial risk 

model residual forecasts  a malarialogist/experimenter would simply calculate InvLn(-8.45*2.303) = InvLn(-

19.460). By so doing, then AntiLog (-8.45) = InvLn (-19.460) = 3.53610^-9 in the residual forecasts.  

Another interesting property of the logarithm in STATA is that errors in geopredicting the logged series can be 

interpreted as percentage errors as rendered by the original series; albeit the percentages are relative to the forecast 

values, not the actual values. Normally a malarialogist/experimenter would interpret the "percentage error" to be the 

error expressed as a percentage of the actual geosampled hyperendemic transmission-oriented explanatory covariate 
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coefficient measurement value, not the forecast value, although the statistical properties of percentage errors are 

usually very similar regardless of whether the percentages are calculated relative to actual values or forecasts. Thus, 

if a malarialogist/experimenter employs least-squares estimation to fit a linear forecasting model to logged district-

level malaria-related data, they would be implicitly minimizing mean squared percentage error rather than mean 

squared error in the original units--which is probably a good thing if the log transformation was appropriate in the 

first place for the model. If the malarialogist/experimenter, thereafter, defines the error statistics in STATA in 

logged units, an interpretation can be rendered as percentages. For example, the standard deviation of the errors in 

geopredicting a logged series, in an empirical-sampled dataset of seasonal-sampled explanatory hyperendemic 

transmission-oriented uncertainty covariate coefficients in STATA would be essentially the standard deviation of the 

percentage errors for predicting the original series and the MAE.  

Therefore, for geopredicting a logged district-level malarial series the MAPE would have to be quantitated for 

defining the original series from the sampled empirical datasets. In the forecasting procedure, in Statagraphics, the 

error statistics would then be shown on the Model Comparison report but in untransformed (i.e., original) units as to 

facilitate a comparison among model outputs, regardless of the transformations employed.  This would be a very 

useful feature of the district-level malarial-related forecasting procedure in STATA as it is would be  hard to 

quantitate a head-to-head comparison of model outputs without a log transformation.  Therefore, whenever a 

geopredictive seasonal ARIMA-related malarial district-level  model is fitted with a number of analytical tools  in 

conjunction with a log transformation for quantitating the standard-error-of-the-estimate or white-noise-standard-

deviation statistics on the Analysis Summary report  in STATA the transformed (i.e., logged) errors in the residual 

forecasts  would   essentially  be the  root mean square percentage errors. 

Additionally, a malarialogist/experimenter can utilize STATA margins and margins plot commands for calculation 

and presentation of results from seasonally regressed malaria-related hyperendemic transmission oriented 

uncertainty explanatory covariate coefficients. In particular, through use of the margins plot command, the regressed 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented geopredictive 

autoregressive explanatory covariates coefficients and their residual forecasts can be graphically visualized.  

STATA can then proceed to more-complicated district-level models where the effects of the independent variables 

may be nonlinear. After quantitating nonlinear effects in the district-level malaria-related  empirical datasets, 

STATA can then render significance levels in the regressed endemic transmission-oriented predictive variables 

using standard polynomial terms (i.e., squares and cubes of variables) and fractional polynomial models. Thereafter, 

the statistical software package can investigate the performance of these procedures with particular regard to over 

fitting. If there is excess Type I error rates in the residual forecast targeting the hyperendemic transmission-oriented 

uncertainty explanatory covariate coefficients, this may be seasonally quantitated as well. Modifications, χ
2
or F 

approximations to likelihood ratio statistics may then be compared to fractional polynomial models in all cases, 

where the margins plot command in STATA can be employed to illustrate the effect that changing an independent 

variable has on the dependent variable in a district-level predictive malaria-related regression-based risk model. 

Piecewise-linear models can then be constructed (i.e.,linear models in which the slope or intercept is allowed to 

change depending on the range of an independent variable). As the name suggests, this command would allow a 

malarialogist/experimenter to easily contrast forecasts made for various levels of regressed sampled categorical 

variables.  

 Further, residual forecasts rendered from a seasonal geopredictive malaria-related regression-based risk model 

constructed in STATA could characterize an empirical dataset of regressed time-series hyperendemic transmission-

oriented explanatory covariate coefficients as having weak white noise, for example, since the sampled data would 

be a sequence of serially uncorrelated random variables with zero mean and finite variance. To run a non-linear 

regression in STATA, the manipulation of data is needed which requires the function generate is needed to generate 

a new variable:generate [new var name]=[function statement] ( e.g. f, generate weight2 = weight*weight can be 

used to create the weight― district-level prevalence rate ‖ squared. Upon creating the variables in the geopredictive 

malaria-related district-level model, the malarialogist/experimenter can then use them to run the non-linear 

regression. Conversely, strong white noise in a district-level seasonal malarial geopredictive model could also be 

determined to possess the quality of being i.d.d.. The term  white noise is used for a discrete signal whose samples 

are regarded as a sequence of serially uncorrelated random variables with zero mean and finite variance (Griffith 

2003). Depending on the context, it may be required that the time-series hyperendemic transmission-oriented 
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samples be independent and have the same probability distribution. In particular, if each sample has a normal 

distribution with zero mean, the signal is said to be Gaussian white noise.  

Thus, a seasonal district-level statistical geopredictive autoregressive malarial risk model can be determined to be 

normally distributed with mean zero and the Gaussian white noise residual series which  may be sufficiently 

quantized for estimating forecasted residual variance error estimates. Further, given a vector time-series empirical 

ecological dataset of  district-level malaria-related explanatory district-level field/clinical/remote sampled malaria-

related hyperendemic transmission oriented geopredictive autoregressive covariate coefficients, an  AIC-like 

criterion can be employed in conjunction with any  time-series error detection algorithm in  STATA for 

spatiotemporally  quantitating  latent inconspicuous uncorrelated variables in a geopredictive ARIMA model 

regression-based framework. When it comes to dealing with residual random effects, STATA automatically 

calculates the F value of individual variables using MSE as the denominator which can produce Type I SS while 

simultaneously computing F values (www.stata.com).  

However, to calculate Type III SS, STATA requires lengthy coding by implementing loops to carry out invasive 

residual analysis in a STATA environment. As such, after opening up the ―regression‖ or ―ANOVA‖ window the 

malarialogist/experimenter would have to run the analysis and store the residual forecast values in ythat 

(www.stats.com). To store the geopredicted value in yhat in STATA , use predict yhat; to store the residuals in res, 

use predict res, r. (www.stata.com) To run a random effect in STATA, the user can use the following codes with 

xtmixed statement:xtmixed [mixed factors]  || [random factors]:or use the pull-down method by choosing the 

―GLM‖ options (refer to ANOVA section). One thing to note here is to always include the colon after stating the 

random factors or an error message will pop out. When it comes to dealing with random effect, STATA 

automatically calculates the F value of individual variables using MSE as the denominator and produce Type I SS, 

where it is usually not the right way to compute F values. However, to calculate Type III SS, STATA requires 

lengthy coding by implementing loops and therefore will not be discussed here.  

 

To run an AVOVA geopredictive district-level field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented gautoregressive malaria-related risk based analysis thereafter in STATA: ANOVA [dependant 

var] [explanatory variable] may be employed. For instance, to generate main effect and interaction plots with 

significance levels of a and two levels of b, the following coding would be required with an example of plot 

provided:predict yhat,.gen b1 = xb if b==1,gen b2 = xb if b==2, and graph b1 b2 a However, to transpose the data 

in a sense to interchange hyperendemic transmission oriented  observational variables, the function xpose is needed. 

When the matrix is transposed, new names for the sampled explanatory hyperendemic transmission oriented 

covariate coefficients can be expected to be given to new variables. If the malariaolgist/experimenter does not want 

to give new variable names, the option ―clear‖ has to be included or an error message will pop out.(www.stata.com). 

 

Also, to carry out a chi-squared test in STATA employing  an empirical dataset of hyperendemic transmission 

oriented covariate coefficients, chitest or chitesti function can be used where  chitest [group1] [group2] ,chitesti 

[obs 1] [obs2] …  [obs1] [obs2]…whereby  each analysis, Pearson chi-Square and likelihood ratio chi-Square is 

calculated Then by plotting res, yhat can generate the residual plot thereafter. By so doing, a regression analysis 

output can be produced with an ANOVA table, model fit statistics (R
2
, Adj R

2
, Root MSE, etc.), and a table with the 

coefficients, standard errors, significance tests and confidence intervals of the respective  sampled district-level 

covariate coefficients Unfortunately, any number of potential outlying estimators can occur in the residual forecasts 

during the transfer process.  

   

One problem with least squares and other regression based analyses for geopredictive malaria-related district level 

modeling is that there are usually one or more large deviations,( i.e. cases whose values differ substantially from the 

other observations). Outliers occur because (a) extreme values of observed variables can distort estimates of 

regression coefficients, (b) they may reflect coding errors in the data.  The degrees to which hyperendemic 

transmission oriented malaria-related outliers influence a geopredictive malaria-related district-level regression line 

will vary For instance , an extreme sampled  value of y that is paired with an average value of X will have less effect 

than an extreme value of Y that is paired with a non-average value of X in a geopredictive malarial risk model. An 

observation with an extreme value on a predictor variable (or with extreme values on multiple Xs) is called a point 

with high leverage.  Fox gives the useful formula Influence on Coefficients = Leverage x Discrepancy. By this he 
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means that outlying explanatory district-level malaria-related hyperendemic transmission oriented covariate 

coefficient measurement values on Y will have the greatest impact when (a) their corresponding X values are further 

away from the mean of X, and (b) the Y value is out of line with the rest of the Y values,( i.e. it does not fall on the 

same line that the other cases do). The leverage option (which can also be called hat) calculates the Hosmer and 

Lemeshew (2000) leverage or the diagonal element of the hat matrix (so named because its computation involves 

yhat).  Univariate or multivariate X outliers are high-leverage observations (Cressie 1993).  Since leverage is 

bounded by two limits: 1/n and 1 (Rao 1973) the closer the leverage rendered from the regressed empirical dataset of 

district-level malaria-related geopredictive hyperendemic transmission oriented is to unity, the more leverage the 

value has.  When the leverage > 2k/n then there is high leverage in a predictive malaria-related model, while for 

small samples 3k/n can be used. (Jacob et al. 2009d).In some circumstances a district-level sampled hyperendemic 

transmission oriented point with leverage greater than (2k+2)/n may be examined.  

 

One advantage of Stata over SPSS is that it includes so-called robust regression routines that are better able to 

handle outliers The STATA routines rreg and qreg resist the pull of outliers, giving them better than OLS efficiency 

in the face of nonnormal, heavy-tailed error distributions(www.stata.com). OLS tends to track outliers, fitting them 

at the expense of the rest of the sample. Over the long run, this can lead to greater sample-to-sample variation or 

inefficiency when time series district-level malarial data samples often contain outliers. Robust regression methods 

aim to achieve almost the efficiency of OLS with ideal data and substantially better than OLS efficiency in non-ideal 

(e.g., nonnormal errors) situations.  

 

Another alternative is qreg, which stands for quantile regression (i.e.Least Absolute Value Models or minimum L1-

norm models). The most common form of quantile regression in seasonal district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented geopredictive autoregressive modeling is median regression, 

where the goal is to estimate the median (rather than the mean) of the dependent variable, conditional on the values 

of the independent variables. Put another way, median regression constructed using an empirical datset of 

geopredictive malaria-related explanatory hyperendemic transmission oriented covariate coefficients will find a line 

through the data that minimizes the sum of the absolute residuals rather than the sum of the squares of the residuals 

as in ordinary regression. Hence, the term Least Absolute Value as opposed to Least Squares would be more 

valuable in seasonal malaria-related risk modeling. Medians are less affected by outliers than means are, (Hosmer 

and Lemeshew 2000), so qreg can do better than regress when there are extreme outliers. 

 

Further, the rreg and qreg routines work best when it is the DV that has outliers rather than the IVs. Statistics With 

STATA, Version 8, p. 239). According to the STATA 12 Manual, ―One of the most useful diagnostic graphs is 

provided by leverage-versus-residual-squared plot lvr2plot, a graph of leverage against the normalized residuals 

squared.‖ According to the STATA 12 Manual, ―Standardized and Studentized residuals are also attempts to adjust 

residuals for their standard errors .Studentized residuals can be interpreted as the t statistic for testing the 

significance of a dummy variable equal to 1 in the observation in question and 0 elsewhere (Belsley et al. 1980). 

Such a dummy variable in a geopredictive district-level model would effectively absorb the sampled hyperendemic 

transmission observation and so remove its influence in determining the other malarial-related covariate coefficients. 

Thus, the lines on the chart in STATA will reveal geopredictive malaria-related seasonal regressed average values of 

leverage and the normalized residuals squared. Points representing sampled district-level malaria-related data above 

the horizontal line will then have a higher-than-average leverage while points to the right of the vertical line will 

have larger-than-average residuals. 

 

Presently, there are two other current malarial-related definitions for statistically seasonally describing 

georeferenced error distributions from regressed empirical sampled autoregressively forecasted malarial-related 

explanatory hyperendemic transmission-oriented covariate coefficients. Some authors, for example, employ 

statistically residually forecasted error distributions which do not have all their power moments finite in the model 

parameter estimators, while others choose distributions that do not have a variance. The optimal methodology may 

then include encompassing all the seasonal malarial district-level residual forecasted distributions as well as those 

derived by the alternative definitions such as log-normal distributions that possess all power moments in the 

regression model framework for spatiotemporally quantitating biased district-level explanatory hyperendemic 

transmission-oriented estimators. Regardless, the outputs rendered, from the seasonal geopredictive hyperendemic 
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transmission-oriented risk-based error distribution model would indicate that the forecasted residual distribution has 

high kurtosis. 

Kurtosis is a descriptive statistics based on a relative concentration of scores in the center, the upper and lower ends 

(i.e., tails), and the shoulders of a distribution (Fotheringham et al., 2002). As such, higher kurtosis in a  seasonal-

sampled district-level geopredictive regression-based risk model constructed from an empirical ecological dataset of  

hyperendemic transmission-oriented malarial-related  explanatory covariates coefficients,  for example, would 

indicate more of the variance in the residual forecasts  is due to infrequent extreme deviations, as opposed to 

frequent modestly-sized deviations in the regressed coefficients. Environmental-related seasonal malarial-related 

feature data attributes that have more kurtosis than the normal (i.e., fat-tailed) commonly has its extremes extended 

beyond that of the normal (Jacob et al. 2009d). Ideally, a malariologist/experimenter would prefer a seasonal 

distribution of the sampled covariate coefficients with low kurtosis (e.g., residual forecasts     not    far    away    

from    the mean). However, for a seasonal district-level malarial-related geopredicted error distribution to be 

normalized, the regressed field/clinical/remote sampled hyperendemic transmission oriented predictive explanatory 

uncertainty covariate coefficients would have to exhibit an excess kurtosis equal to 0.  Alternatively, a seasonal 

geopredictive district-level malarial regression-based risk model targeting specific endemic transmission-oriented 

covariate coefficients with positive kurtosis in the residual forecasts would have to exhibit a peak in the middle and 

fat tails versus a normal distribution. Fat-tailed distributions have values of kurtosis that are greater than 3.0 

(Hosmer and Lemeshew 2000). Thus, the extreme values would be positive in the seasonal district-level 

geopredictive regression–based malarial model residual forecasts. However, this is only possible when the scenes in 

the residual forecasts are positive. 

In probability theory and statistics, scenes is a measure of the extent to which a probability distribution of a real-

valued random variable "leans" to one side of the mean (Fotheringham 2002). The skewness value can be positive or 

negative, or even undefined. Unfortunately, the qualitative interpretation of the skew is complicated in seasonal 

geopredictive malarial-related endemic uncertainty risk mapping. For a unimodal distribution, for example,  

rendered from a regressed  empirical dataset of district-level malarial-related endemic transmission-oriented 

uncertainty explanatory covariate coefficients, a negative skew would indicate that the tail on the left side of the 

probability density function is longer or, fatter than the right side as it does not distinguish these shapes. In statistics, 

a unimodal probability distribution is a probability distribution which has a single mode. As the term "mode" has 

multiple meanings in a malarial-related district level geopredictive model so does the term "unimodal". Strictly 

speaking, a mode of a discrete probability distribution  in a geopredictive malarial-related district-level uncertainty 

risk model would be a value at which the probability mass function (pmf) takes its maximum value (e.g., seasonal-

sampled  hyperendemic transmission oriented explanatory covariate coefficient measurement indictor value) ( see 

Jacob et al. 2011b). A mode of a continuous probability distribution is a value at which the probability density 

function (pdf) attains its maximum value (Hosmer and Lemeshew 2000). Note, that in both cases there can be more 

than one mode in the malarial-related model, since the maximum value of either the pmf or the pdf can be attained at 

more than one seasonal-sampled parameter estimator value.  

Conversely, positive skew in a district-level forecasted malarial-related distribution would indicate that the tail on 

the right side is longer or fatter than the left side. In cases where one tail is long but the other tail is a fat, scene does 

not obey a simple rule (see Fothingham 2002). For example, a zero value in a seasonal geopredictive malarial-

related district-level uncertainty model would indicate that the tails on both sides of the mean balance out, which is 

actually the case for a symmetrical distribution. On the other hand, for asymmetric distributions rendered from a 

dataset of regressed malarial-related endemic transmission-oriented uncertainty explanatory covariate coefficients, 

the asymmetries would eventually even out, thus one tail would be long but thin, and the other would be short but 

fat. Further, in multimodal distributions and discrete distributions rendered from the district-level regressed dataset 

of district-level malarial-related field/clinical/remote sampled hyperendemic transmission oriented predictive 

autoregressive uncertainty explanatory covariate coefficients, skewness would also be difficult to interpret.  For 

example, as soon as the skewness is negative in the district-level malarial-related forecasts, the impact of a high 

excess kurtosis would adversely affect the extreme negative regressed endemic transmission-oriented uncertainty 

explanatory covariate coefficient measurement values in the residual error variance. 

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Deviation_(statistics)
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Unimodal
https://en.wikipedia.org/wiki/Long_tail
https://en.wikipedia.org/wiki/Fat-tailed_distribution
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Discrete_probability_distribution
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Continuous_probability_distribution
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Frequently, adjusted version of Pearson's kurtosis have been employed to seasonally quantitate the excess kurtosis 

in empirical datasets of regressed ecological-related seasonal-sampled district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented predictive explanatory covariate coefficients and to 

provide a comparison of the shape of a given model error distribution, to that of the normal distribution. Pearson 

(1905) introduced kurtosis as a measure of how flat the top of a symmetric distribution was when compared to a 

normal distribution of the same variance.  He referred to more flat-topped distributions (2 < 0) as ―platykurtic,‖ less 

flat-topped distributions (2 > 0) as ―leptokurtic,‖ and equally flat-topped distributions as ―mesokurtic‖ (2  0).  

Kurtosis is actually more influenced by scores in the tails of the distribution than scores in the center of a distribution 

(Hosmer and Lemeshew, 2000). Accordingly, it is often appropriate to describe a leptokurtic distribution in a 

spatiotemporal predictive district-level regression-based uncertainty malarial-related risk model as ―fat in the tails‖ 

and a platykurtic distribution as ―thin in the tails‖. Distributions with negative or positive excess kurtosis are called 

leptokurtic distributions, respectively (Fotheringham 2002, 2000). Leptokurtic distributions are identified by peaks 

that are thin and tall (Hosmer and Lemeshew, 2000). Platykurtic curves, on the other hand, have shorter ‗tails‘ than 

the normal curve of error and leptokurtic longer ‗tails‘. Skewed distributions are always leptokurtic (Hopkins and 

Weeks 1990). Pearson‘s measure of kurtosis, however, has been often criticized in literature regarding predictive 

seasonal malarial-related regression-based uncertainty risk models as the indices do not focus adequately on the 

central part of an error distribution. Although never proposed, an alternative measure of kurtosis for seasonal district-

level malarial-related predictive regression-based uncertainty risk model, the measurement of kurtosis may adjust the 

regressed georeferenced hyperendemic transmission-oriented explanatory covariate coefficients by removing the 

effect of skewness in the residual forecasts using autocorrelation statistics.  

Spatial autocorrelation measures offer you additional insight into the interdependence of spatial data. These 

measures quantitate the correlation of a time -series geopredictive malarial-related data [e.g., z(s)] with itself at 

different locations as such these statistics can be very useful whether information exists at exact locations (point-

referenced district-level data) or, measurements that characterize an area type such as census tracts, zip codes, and 

so on (areal data).  One measure of spatial autocorrelation provided by one measure of spatial autocorrelation 

provided by PROC VARIOGRAM is Moran‘s I statistic, which was introduced by Moran (1950) and is defined as 

 where , and . Another measure of spatial 

autocorrelation in PROC VARIOGRAM is Geary‘s c statistic (Geary 1954), defined as 

 These expressions indicate that Moran‘s I coefficient makes use of the centered 

variable, whereas the Geary‘s c expression uses the non-centered values in the summation. Moran's I is a measure of 

global spatial autocorrelation, while Geary's C is more sensitive to local spatial autocorrelation. Geary's C is also 

known as Geary's contiguity ratio, Geary's ratio, or the Geary index. 

In this research Moran's I was defined as where N  was  the number of 

spatial units (e.g., districts) indexed by  (e.g. field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented geopredictive autoregressive covariate coefficients) and j  ( seasonal-sampled measurement 

indicator values). X was the variable of interest (i.e., seasonal prevalence rates in Uganda);  was the mean of X; 

and wij was an element of a matrix of spatial weights. We used the expected value of Moran's I under the null 

hypothesis of no spatial autocorrelation which was  whose variance  in the residual was equivalent 

to  

where , , ,

, in SAS/GIS. (See 

Griffith 2003) Negative (positive) values indicate negative (positive) spatial autocorrelation. Values range from −1 

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
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(indicating perfect dispersion) to +1 (perfect correlation). A zero value indicates a random spatial pattern. For 

statistical hypothesis testing, Moran's I values can be transformed to Z-scores in which values greater than 1.96 or 

smaller than −1.96 indicate spatial autocorrelation that is significant at the 5% level (Cressie 1993). Moran's I is 

inversely related to Geary's C, but it is not identical which is also a measure of spatial autocorrelation (Griffith 

2003). In this research, Geary's C was defined as  where N was the number of 

districts  in Uganda indexed by i and j ;  X was  the district-level prevalence rates ; was the mean of X; wij was a 

matrix of spatial weights; and W was the sum of all wij. The value of Geary's C lies between 0 and 2. 1 means no 

spatial autocorrelation. Values lower than 1 demonstrate increasing positive spatial autocorrelation, whilst values 

higher than 1 illustrate increasing negative spatial autocorrelation (Cliff and Ord 1971).  

 Inference on autocorrelation statistic comes from approximate tests based on the asymptotic distribution of  I and c , 

which both commonly tend to have a normal distribution as n increases (Griffth 2003). To this end, PROC 

VARIOGRAM calculates the means and variances of  I and c. The outcome then depends on the assumption made 

regarding the distribution . In particular, a malarialogist can choose to investigate any of the statistics under the 

normality (i.e., Gaussianity) or the randomization assumption in a geopredictive malarial seasonal uncertainty-based 

risk model. Cliff and Ord (1981) provided the equations for the means and variances of the and distributions, as 

described in the following.  The normality assumption asserts that the random field follows a normal 

distribution of constant mean ( ) and variance, from which the values are drawn. In this case, the I statistics yield 

 and  where 

and . The corresponding moments for 

the  statistics are  and . According to the randomization assumption, 

the  and  malarial-related observations are considered in relation to all the different values  in the geopredictive 

risk model  which and could take, respectively, if the values were repeatedly randomly permuted around the 

domain . The moments for the  statistics would then be  and  

where , . The factor 

 would then be the coefficient of kurtosis that uses the sample moments 

for .  

Finally, the  statistics under the randomization assumption would be given by  and 

with ,

 and . Thereafter, if a 

malarialogist specifies LAGDISTANCE= to be larger than the maximum data distance in a specific domain, the 

binary weighting scheme used by the VARIOGRAM procedure would lead to all weights , . In this 

extreme case the preceding definitions would show that the variances of the  and  statistics becomes zero under 

either the normality or the randomization assumption.  A similar effect might even occur when co-located malarial-

related observations exist in the model. The Moran‘s I  and Geary‘s  C statistics allow for the inclusion of such pairs 

in the computations. Hence, contrary to the semi variance analysis, PROC VARIOGRAM does not exclude pairs of 

collocated data from the autocorrelation statistics.  

The ARIMA procedure provides the identification, parameter estimation, and forecasting of autoregressive 

integrated moving average (Box-Jenkins) models, seasonal ARIMA models, transfer function models, and 

intervention models. The ARIMA procedure offers complete ARIMA (Box-Jenkins) modeling with no limits on the 

order of autoregressive or moving average processes. Estimation can be done by exact maximum likelihood, 

conditional least squares, or unconditional least squares. In addition you can model intervention models, regression 

http://en.wikipedia.org/wiki/Geary%27s_C
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/statug_variogram_sect018.htm#clif_a_81
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/statug_variogram_sect004.htm#statug.variogram.vro_lagdist_opt
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models with ARMA errors, transfer function models with fully general rational transfer functions, and seasonal 

ARIMA models. PROC ARIMA's model identification diagnostics include plots of autocorrelation, partial 

autocorrelation, inverse autocorrelation, and cross-correlation functions.  

In this research we used PROC ARIMA for constructing a tentative autoregressive moving average (ARMA) order 

identification predictive malarial risk model based on smallest canonical correlation and an extended sample 

autocorrelation function. ARIMA model-based interpolation of missing values were permitted. Forecasting is tied to 

parameter estimation methods (Cressie 1993). Finite memory forecasts were used for estimating by maximum 

likelihood and exact nonlinear least squares, while infinite memory forecasts were used for estimating conditional 

least squares. The ARIMA procedure offers a variety of model diagnostic statistics, including AIC ,BIC ,Ljung-Box 

chi-square test statistics for white noise residuals stationarity tests, including Augmented Dickey-Fuller (including 

seasonal unit root testing), Phillips-Perron, and random-walk with drift tests (www.sas.edu)  The %DFTEST macro 

performs Dickey-Fuller tests for simple unit roots or seasonal unit roots in a time series. The %DFTEST macro is 

useful to test for stationarity and determine the order of differencing needed for the ARIMA modeling of a time 

series. 

 In this research, we also employed the eigenvector filtering approach promoted by Griffith (2003) and Gets and 

Griffith (2002) by focusing on specification of a mean response to force the spatially dependent parameter values of 

an auto-model to zero in SAS/GIS. The Griffith approach is closely tied to the covariance matrices so fundamental 

to regression analyses, which is especially important for identifying the presence of multicollinearity as the number 

of repressors increases. Thus, we assumed that the Griffith would allow for predictive autoregressive endemic 

district-level malarial-oriented regression model residuals to either avoid a spatial specification or duplicate it in a 

more explicit spatial form. In most predictive autoregressive arthropod-related risk uncertainty mapping this is the 

case as the eigenvectors for the geostatistical covariance and autoregressive inverse covariance matrices in a  time 

series-related model  would  be approximately the same (see Jacob et al. 2011a, Jacob et al. 2010c,Jacob et al. 

2009d). Our assumption was this approach would allow in-depth, invasive study of precisely how spatial 

autocorrelation impacts upon error correlation coefficients rendered from regressed georeferenced seasonal-sampled 

explanatory covariates. We also assumed that these eigenvectors would relate directly to the Moran‘s I statistic, as 

well as to spatial autoregressive model specifications.  

The basis of our procedure was the decomposition of Moran‘s I statistic into orthogonal and uncorrelated 

uncertainty malarial map pattern components. This tool measures spatial autocorrelation (i.e., seasonal-sampled 

malarial-oriented data feature similarity) based not only on the georeferenced feature locations or attribute values 

alone but on both feature locations and feature values simultaneously. Given a set of sampled district-level malarial-

related hyperendemic malarial-oriented predictive autoregressive features can then be associated sampled attributes; 

the statistic can evaluate whether the pattern expressed is clustered, dispersed, or random (see Cliff and Ord  1972). 

Critical Z score values use a 95% confidence level normally occur between -1.96 and +1.96 standard deviations for 

determination of null hypothesis acceptance/rejection (Blackwell 1985).  Moran‘s I tool in SAS/GIS can calculate 

the Moran's I Index value and a Z score for evaluating the significance of a seasonal-sampled malarial-related index 

value. For example, Jacob et. al. (2008a) applied the Getis-Ord Gi* statistic and found a significant cluster in the 

Kangichiri rice-village agro ecosystem complex in the Mwea Rice Scheme, Kenya (Z score > 3.70, p < 0.05), with 

the clustering of habitats highest at a distance of 400 m from the village complex.  

The authors then used a robust Z score for evaluating immature aquatic larval habitats of Anopheles arabiensis, a 

major malaria-related mosquito in a landscape–oriented epidemiological model to determine if, seasonal-sampled 

georeferenced predictor variables fell outside that range or, if the pattern exhibited by the explanatory covariate 

coefficients were classified too unusual to be rendered through random chance.  The authors then assumed that if the 

latter was the case it was then possible to reject the null hypothesis and proceed with the determination of the actual 

causation of the clustering tendencies within the residual algorithmic predictive uncertainty autoregressive outputs 

(e.g., either a statistically significantly aquatic larval habitat cluster or a statistically significantly dispersed pattern). 

The authors did this by employing a robust ArcGIS ‗hot spot‘ analysis and calculating the Getis-Ord Gi* statistic for 

each sampled  georeferenced immature An. arabiensis-related spatial data feature attribute within the riceland 

epidemiological study site. Typically hot spots or hot spot areas are concentrations of incidents [e.g., aggregation of 

habitats based on spatiotemporal field-sampled count data] within a limited geographical area that appear over time 

http://www.sas.edu/
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(McDonald 2008). This tool quantified each georeferenced seasonal-sampled attributed within the context of the 

sampled neighboring features. If a sampled georefernced habitat feature attribute value was high, and the values for 

all of its neighboring sampled feature attributes was also high, the location is considered a hot spot (Patz 2000). 

Yearly arthropod –borne infectious disease clusters in similar areas are indicative of endemicity (i.e., hotspots) (Hay 

2000).  

A weighted set for neighboring seasonal-sampled riceland features was then attained. The local sum for a 

georeferenced An. arabiensis aquatic larval habitat sampled attribute value and its neighbors was then compared 

proportionally to the sum of all the seasonal- sampled data at the riceland study site. When the local sum is much 

different than the expected local sum, and that difference is too large to be the result of random chance, a 

statistically significant Z score is the result (Hosmer and Lemeshew 2002). When the analysis was conducted in the 

neighboring riceland village agro-ecosystem , two clusters were noted (Z score > 3.70, p < 0.05)—but, only up to a 

maximum distance of 400 m for a northern cluster and 150 m for a southern cluster. Commonly, non-binary weights 

are allowed in Gi(d) and G*i statistics, and the correlations between nearby values of the statistics are thereafter  

derived and verified by simulation (see Getis and Ord, 1992). Environmental and geographic features were then 

added to the seasonal predictive malarial regression-based risk maps to determine possible environmental factors 

associated with outbreaks.  

In this research, we assumed that our decomposition would make orthogonal the latent spatial correlation 

represented by the geographic configuration of the sample district-level locations in Uganda described by a given 

spatial weights matrix.  Commonly in an auto-model generated from seasonal -sampled field and remote related 

malarial–data, the probability density mass/functions contain a linear combination of the dependent variables values 

at a nearby sampled location (see Jacob et al., 2005b). We also assumed we could account for redundant locational 

information by generating eigenvectors of a given geographic weights matrix. These corresponding eigenvectors 

were then employed as observational uncertainty explanatory covariate coefficients in a predictive risk seasonal 

district-level endemic transmission-oriented regression-based equation. The aim of the spatial filtering analyses  was 

to control for latent autocorrelation error coefficients in the empirical  ecological dataset of the spatiotemporal-

sampled, georeferenced hyperendemic transmission-oriented explanatory covariate coefficients with a set of proxy 

variables, rather than to identify a global autocorrelation parameter for efficiently seasonally spatially sampling 

district-level dependent process. Global statistics summarize standard error and other time-series dependent 

parameter uncertainty estimates from multiple sampled georeferenced locations making it difficult for spatial 

assessment of autoregressive error at a single predictive sampled site (Jacob et al., 2009d; Jacob et al., 2008a).We 

then utilized the misspecification interpretation of spatial autocorrelation, which assumed that residual error 

correlation among the sampled  district-level uncertainty estimators was induced by missing exogenous variables, 

which themselves may have been spatially correlated. Our assumption was that by quantitating inconspicuous latent 

autocorrelation error coefficients propagation in a seasonal-sampled predictive malarial uncertainty risk-based map 

employing robust spatial filter eigenvectors, we could derive unbiased estimators spatially targeting district-level 

hyperendemic transmission-oriented explanatory covariate coefficients. Further, we assumed we could thereafter 

generate accurate predictive residual auto variance estimates and mean squared error probabilities for temporally 

forecasting district-level endemic transmission zones in Uganda. These model outputs would then adjust for the 

spatially predictive autoregressive error estimates in a space-time district-level forecasting model based on crucially 

dependent assumptions of non-normality and non-homogeneity in the sampled data.  

Initially, we concentrated on standard linear regression models y = Xb +e   where y was an (n x 1) vector of the 

endogenous variable for the n georeferenced district-level sampled observations, where X was an (n x k) matrix of k 

exogenous variables, including an (n x 1) unity vector 1, b was the (k x 1) vector of regression parameters, and e was 

an (n x 1) vector of random disturbances. We assumed that the autocorrelation coefficients among the regression 

disturbances were induced by exogenous spatially correlated factors, which were not incorporated into the district-

level model. This lead to a model misspecifications by shifting parts of the relevant information from the mean 

response Xb or, first-order component into an(n x n) covariance structure of the disturbances or, second-order 

component cov(e ). Alternatively, we allowed an underlying spatial process to induce spatial autocorrelation in the 

district-level predictive district-level malarial hyperendemic transmission-oriented model.  By so doing, we assumed 

that an observed spatial pattern in the response variable(i.e., district-level Ugandan prevalence rates)  could be 

decomposed into, preferably three, statistically independent components: (a) a systematic spatial trend component 

that was specified by a parsimonious set of exogenous variables with a substantive meaning for the problem under 
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investigation; (b) a stochastic signal that reflected either an underlying spatial process and/or a set of missing 

exogenous factors with an inherent spatial pattern; and, (c) the independent white-noise disturbances. 

Thereafter, we validated all residual district-level model outputs by incorporating the spatiotemporal-sampled 

georeferenced specific weights from the  geopredictive residual autoregressive error matrix by configuring the field -

sampled district-level malarial data into a cumulative covariate correlation algorithm to evaluate the robustness of 

the distributions rendered by the linear-based transmission-oriented risk model. Our assumption was that by 

calculating analytic derivatives with non-linear parameter restrictions employing simultaneous linear-based system 

and nonlinear predictive regression equations with distributed lags and time series error processes, robust spatial 

forecasters of district-level malaria-related prevalence rates could be accurately quantitated in SAS/GIS.  

In this research, the spatially filtered SAS/GIS formatted the seasonal-sampled district-level georeferenced malarial-

oriented spatial data feature data attributes sampled in the Ugandan study site which was then integrated with a SAS 

application, using SAS/EIS, SAS/GIS. These application sessions, driven from SAS/EIS or SAS/AF, provided 

powerful SAS Component Language (SCL) mechanisms and data step processing capabilities for spatially 

manipulating the  district-level malarial risk mapping georefernced uncertainty explanatory covariate coefficients.  

After refining the sampled explanatory district-level malarial-related  observational geopredictor variables and 

making them suitable to be used in a Poissonian model, we input this data into a SAS/GIS employing standard  

regression specifications of  seasonally-sampled district-level representing  2006, 2007, 2008, 2009, 2010 to check 

their linear integrity. Spatial filter analysis was then also performed in SAS/GIS. Spatial information/data from each 

of the Ugandan districts was then imported interactively and in a batch mode format into ArcGIS Geostatistical 

Analyst for an on-line geopredictive uncertainty risk mapping and analysis solution. For example, empirical 

Bayesian-oriented probabilistic estimation matrices are currently available in Geostatistical Wizard and as a 

geoprocessing tool in the Geostatistical Analyst toolbox in ArcGIS which can be exported into a SAS geodatabase 

(www.esri.com). The on-line solution was constructed to enable the forecasted data rendered from our model 

residuals to directly generate malarial district-level uncertainty maps configured to illustrate their choices of risk and 

contextual data set integrations. The Ugandan predictive risk mapping solution was then extended  into  the classical 

temporal-geographic modeling concepts to determine prolific high to low malaria risk foci within classified 

Thessian polygons at the district level including maps from 2006-2010 of the  sampled observational variables to 

establish  futuristic malaria risk trends.  

We then attempted to construct a robust random unbiased error estimator using the residuals rendered from the 

spatial filter model to seasonally quantitate the uncertainty effects in the selected geosampled  malarial-related 

georeferenced coefficients in order to capture district-level dependence in the  empirical datasets. The articulated 

tessellations for the Ugandan study site based upon district geocodes were then digitally overlaid onto interpolated 

risk maps from the Malaria Atlas Project (http://www.map.ox.ac.uk) in ArcGIS. Mosquito vector arthropod species 

seasonal distributional data such as species range maps (i.e., extent-of-occurrence), district-level surveys and 

biodiversity atlases are a common source for risk–based cartographic displays of mosquito species-environment 

relationships (Hay 2000). In this research, we constructed multiple seasonal stochastic models using archived Kriged 

malarial mosquito species An. arabiensis s.s and An. gambiae s.l. distribution data.  Contagious processes, such as 

conspecific attraction, may generate spatiotemporal error patterns in species abundance cannot be explained by 

simple regression-based hierarchical cluster-based models
 
(see Griffith 2005).   

In this research, the remotely-dependent explanatory predictor covariate intra-cluster error coefficients were derived 

using QuickBird 0.61m spatial resolution image data (www.digitalglobe.com) for constructing multiple malarial-

related autoregressive malaria mosquito aquatic larval habitat uncertainty distribution models. Further, to improve 

seasonal district-level malarial predictive risk modeling we overlaid the spatial tessellation rendered from our model 

onto the historical datasets from Malaria Atlas Project (i.e., MAP). The MAP team has assembled a unique 

geospatial database on linked information based on medical intelligence and satellite-derived climate data to 

constrain the limits of malaria transmission employing the largest ever remote archive of community-based 

estimates of parasite prevalence (http://www.map.ox.ac.uk). These data have been assembled and analyzed by a 

team of geographers, statisticians, epidemiologists, biologists and public health specialists. 

Therefore, the objectives of this research were to: (1) construct robust stepwise regression models using multiple 

georeferenced observational variables for spatiotemporally quantitating residual varying and constant  uncertainty 

http://www.map.ox.ac.uk/
http://www.map.ox.ac.uk/
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covariate coefficients associated to sampled  district-level parameter estimators (2) filter all latent autocorrelation 

uncertainty coefficients in the residual variance estimates using an eigenfunction error diagnostic decomposition 

algorithm, (3) and thereafter, construct robust  predictive autoregressive malarial risk maps using existing data in 

MAP ATLAS for accurately forecasting field and remote sampled district-level malarial indices in Uganda.  

Materials and Methods 

2.1. Study site: Uganda is a landlocked country in East Africa. The country is located on the East African plateau, 

lying mostly between latitudes 4°N and 2°S (a small area is north of 4°), and longitudes 29° and 35°E. It is about 

1,100 meters (3,609 ft.) above sea level, and these slopes very steadily downwards to the Sudanese Plain to the 

north. However, much of the south is poorly drained, while the center is dominated by Lake Kyoga, which is also 

surrounded by extensive marshy areas. In many endemic areas, malaria prevalence in communities is maximum in 

areas bordering on marshes where rates can range from 1% to 15% according to age and season of the year (Trape 

et. al. 1992). 

Although generally equatorial, the climate is not uniform as the altitude modifies the climate. Southern Uganda is 

wetter with rain generally spread throughout the year. Although An. gambiae is usually the predominant species in 

environments with high humidity and rainfall, An. arabiensis is more common in zones with less rainfall and both 

species occur sympatrically across a wide range of tropical Africa (Coetzee and le Sueur 2000). Larvae of An. 

gambiae are commonly found in clear, sunlit pools of water in small depressions such as foot or hoof prints, the 

edges of bore holes and burrow pits, roadside puddles formed by tire tracks, irrigation ditches and other man-made 

shallow water bodies (Gimnig et al. 2001, Gillies and De Meillon 1968, White 1972). Anopheles gambiae malaria 

vectors have also been found breeding in polluted water rich in organic matter (Sattler et al. 2005, Keating et al. 

2004), in large bodies of water such as flood plains (Castro et al. 2010) and in pools of water along lake shores 

especially when there are fluctuations in water level as in Lake Victoria (Minakawa et al. 2008). At Entebbe on the 

northern shore of Lake Victoria, most rain falls from March to June and in the November/December period. Further 

to the north a dry season gradually emerges; at Gulu about 120 km from the South Sudanese border, November to 

February is much drier than the rest of the year. 

Uganda is divided into districts, spread across four administrative regions: Northern, Eastern, Central (i.e., Kingdom 

of Buganda) and Western. The districts are subdivided into counties. A number of districts have been added in the 

past few years, and eight others were added on July 1, 2006 plus others were added throughout 2010 due to 

increased urbanization and local policy changes. Environmental alterations due to deforestation, swamp reclamation 

mainly for agriculture, excavation of sand and building stones, brick making and vegetation clearance may lead to 

an increase in aquatic larval habitats of malaria vectors, such as An. gambiae s.l. (Carlson et al. 2004, Fillinger et al. 

2004). Presently there are over 100 districts in the Ugandan study site (.http://en.wikipedia.org/wiki/Uganda - 

cite_note-district-21) Most districts are named after their main commercial and administrative towns. (See Figure 1 

for district-level administrative divisions in Uganda 
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Figure 1: Administrative Boundaries: Districts of Uganda per 2010 data 

 

2.2 District mapping: Initially, base maps were generated using   Google Earth 
TM

 and  global positioning systems 

(GPS) ground coordinates of the  various districts at the   Ugandan epidemiological study site. The GPS ground 

coordinates were acquired from a CSI max receiver which has a positional accuracy of +/- .178 (Jacob et al. 2009c)). 

Using a local GPS broadcaster can compensate for ionospheric and ephemeris effects which can improve horizontal 

accuracy significantly and can bring altitude error down in a spatiotemporal seasonal-sampled predictive vector 

arthropod larval habitat distribution model (Jensen 2005). Each georeferenced district in Uganda featured attribute 

was entered into the VCMS™ relational database software product (Clarke Mosquito Control Products, Roselle, IL). 

The VCMS™ database supports a mobile field data acquisition component module, called Mobile VCMS™ that 

synchronizes field-sampled data from industry standard Microsoft Windows Mobile™ devices and can support add-

on GPS data collection. Mobile VCMS™ and its corresponding FieldBridge
®
 middleware software component were 

used to support both wired and wireless synchronizing of the seasonal field-sampled data collected district-level 

data. The data was collected with the Mobile VCMS™ and then synchronized thereafter directly into a centralized 

VCMS™ relational repository database. Additional geocoding and spatial display of the spatiotemporal-sampled 

seasonal Ugandan data attributes was then mapped using the embedded VCMS™ GIS Interface Kit™ which was 

developed utilizing ESRI‘s MapObjects™ 2 technology. In this research, the VCMS™ database supported the 

export of all geoparameters using any combination of the time-series district-level estimators in order to further 

process and geospatially display specific data attributes in a stand-alone desktop GIS software package (i.e., ArcGIS 

10.1
®
).  

2.3 Grid-based algorithm: Thereafter, a digitized matrix was constructed by applying a mathematical algorithm in 

order to fit the continuous and bounded sampled district-level surfaces from a field and vegetated canopy -sampled 

attribute. GIS grid-based data files consist of columns and rows of uniform cells coded according to georeferenced 

data values (Jensen 2001). Each digitized grid cell within the matrix contained an attribute value as well as the 

district sampled geocoordinates. As such, the spatial location of each district cell was implicitly contained within the 

file:///C:/Users/bjacob1/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/Templates/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/9DKUTEGZ/altitude%20error%20down%20to%203-10m
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ordering of the matrix . Multiple data layers were then created using different coded field/clinical/remote sampled 

hyperendemic transmission oriented covariate coefficients values for the various field attributes which were related 

to the same grid cell. Each polygon was assigned a unique identifier. Field attribute tables were then linked to the 

polygons. The polygons were used thereafter to define the district-level sampling frame. This allowed for multiple 

interactions enabling retrieval and transformation of the geosampled district-level data efficiently, regardless of 

spatial dimensionality of the data featured attribute.  

Remote Sensing: QuickBird (www.digitalglobe.com) images were acquired in March 11
th

 2008, for the SJL study 

site. QuickBird multispectral products provided four discrete non-overlapping spectral bands covering a range from 

0.45 micrometer (µm) to 0.72 µm, with an 11-bit collected information depth with a spatial resolution of 0.61m. 

QuickBird imagery was classified using the Iterative Self-Organizing Data Analysis Technique (ISODATA) 

unsupervised routine in ERDAS Imagine V.8.7™. The images were co-registered manually, using ground control 

points and georectified images from the QuickBird data. The satellite images were co-registered by applying a first 

order polynomial algorithm with a nearest neighbor resampling method. The Universal Transverse Mercator (UTM) 

Zone 37S datum WGS-84 projection was used for all of the spatial datasets.A land use land cover analyses was then 

generated as in Jacob et al. ( Jacob et al. 2013b, 

 

Figure 2:  An ArcGIS  land use land cover analyses for the Ugandian study site 

 

2.4 Environmental parameters: Multiple district-level georeferenced explanatory predictor covariate coefficients 

were then examined extensively using: longitude, latitude, and altitude data. The criteria involved the centrographic 

measures of spatial mean . The attributes included district level monthly rainfall, humidity, population density and 

specific vegetation geoparameter estimates. 
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2.5 Vegetation Indices: The different modules in Spatial Analyst
® 

extension of ArcGIS 10.1 and spatial modeller 

tools from ERDAS Imagine 9.1
 
were then used to perform VI calculations. NDVI was calculated using radiance, 

surface reflectance (p), and the  apparent reflectance measured at the  top of the atmosphere( TOA)  employing the 

georeferenced  district level vegetated canopy spectral covariate coefficients  and the satellite spectral bands. The 

ratio of reflected vegetated canopy radiance from the red and NIR bands from each imager were then used to 

normalize illumination and topographic variation and to form the NDVI, which was then used as an indicator of the 

amount and vigor of canopy vegetation in the district-level  epidemiological sites. We performed Raster modeling in 

ArcGIS 10.1 which included performing image differencing on the NDVI layers, classifying the layers into different 

classes and calculating a wetness index using the Raster Calculator. The difference of the QuickBird visible and NIR 

bands was then divided by their sum, which formed the functionally equivalent NDVI, over the vegetated canopy 

and terrestrial surfaces of the epidemiological study site. In this research,NDVI was computed directly without any 

bias or assumptions regarding plant physiognomy, canopy cover class, soil type, or climatic conditions, within  a  

range from -1.0 to 1.0 using the  QuickBird visible and NIR reflectances, (p), as in Jacob et al., (2012)  

Figure 3:  An ArcGIS  NDVI analyses for Gulu district of the  Ugandian study site 
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2.6 Environmental Regression Parameters: Initially, the data analysis explored covariation between prevalence
 

employing the formula adjusted cases)/population, in SAS/GIS which in this research was not the same as the 

reported number of probable and confirmed cases. In this research we employed variable Y, and the following 

variables: annual population density, density of clinics, and density of water bodies; monthly humidity, rainfall, and 

minimum and maximum temperature. Lines graphs were then generated in SAS/GIS using median rainfall and 

prevalence data. The graphs were generated for five different years (2006-2010) and across the different 

georeferenced sub-regions, following the traditional regional designations outlined in Figure 1. 

We then generated histograms in SAS which was constructed using a 95% confidence level ascertained whether the 

proportions of the within cluster-based district-level field/clinical/remote sampled malaria-related explanatory 

hyperendemic transmission oriented residual explanatory covariate coefficient estimates differed by sampled district 

locations. The SAS procedures (e.g,  PROC REG) were the used to fit the district-level models. SAS/STAT 

procedures commonly perform at least one type of regression analysis (e.g., CATMOD, GENMOD, GLM, 

LOGISTIC, MIXED, NLIN, ORTHOREG, PROBIT, RSREG, and TRANSREG procedure). SAS/ETS and PROC 

REG procedures are specialized for applications in time-series or simultaneous systems (www.sas.edu). In this 

research, the regression models assumed independent Bernoulli outcomes denoted by Yi = 0 or 1, taken at the 

sampled Ugandan district sites i = 1, 2, …, n,. The estimator measurement indicator values were then described by 

Xi, a 1-by-(K+1) vector of K values and a 1 for the intercept term which represented a sampled district-level site 

location i. The probability of a 1 being realized for the binary outcome data was provided by: P (Yi = 1| Xi) = exp 

(Xiβ)/ [1 + exp (Xiβ)] (2.1) where β was the (K+1)-by-1 vector of non-redundant parameters and P (Yi = 0| Xi) = 1 - 

P (Yi = 1|Xi). Jacob et al (2009d) used the simplest form of Equation (2.1)  for  qualitatively assessing and 

quantizing a constant probability across multiple  randomized spatiotemporal sampled aquatic larval habitats of An. 

arabiensis,  using [i.e., P(Yi = 1| Xi) = P(Yi = 1| α ) = exp( α )/[1 + exp (α) ] which rendered a constant α using a 

bivariate regression notation. This statistical procedure was performed by denoting β0, where P(Yi = 1| α ) → 0 as α 

→ −∞ , P(Yi = 1| α) → 0.5 as α → 0, and P (Yi = 1| α ) → 1 as α → ∞ in the multivariate regression model matrix 

framework. 

 A Poisson regression with statistical significance was also calculated by a 95% confidence level in PROC REG. 

The Poisson regression is a member of a class of generalized models which is an extension of traditional linear 

models which allows the mean of a population to depend on a linear predictor covariate coefficient estimate through 

a nonlinear link function while allowing the response probability distribution to be any member of an exponential 

family of distributions (see Hosmer and Lemeshew 2002). The following statements were used to estimate the  

Poisson regression model:  

   proc countreg data=one ; 

      model y = x / dist=poisson ; 

   run; 

The response variable (i.e., Y )  represented district-level malarial prevalence which was numeric and had 

nonnegative field/clinical/remote sampled malaria-related explanatory hyperendemic transmission oriented covariate 

coefficients estimators integer values 

In the Poisson model it was assumed that the dependent variable Y, had a Poisson distribution given the independent 

variables X1, X2, ...., Xm, P(Y=k| x1, x2, ..., xm) = e
- 

 
k
 / k!, k=0, 1, 2, ......, where the log of the mean  was 

assumed to be a linear function of the sampled independent variables. That is, log() = intercept + b1*X1 +b2*X2 + 

....+ b3*Xm, implied that  was the exponential function of independent variables, where  = exp(intercept + b1*X1 
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+b2*X2 + ....+ b3*Xm). The Poisson regression model was then rewritten in the following form: log() = log(N) + 

intercept + b1*X1 +b2*X2 + ....+ b3*Xm, where n was the total number of  explanatory covariates sampled in each 

district–level study site. The logarithm of variable n was used as an offset, that is, a quantitative regression variable 

with a constant coefficient of 1 which in this research represented each sampled independent observation. The log of 

the incidence, log ( / n), was then modeled as a linear function of the time series-dependent independent variables. 

Thereafter, a maximum likelihood method was employed to estimate the parameter estimator error hierarchy 

rendered from the of regression model residuals in PROC GENMOD.  

In this research the parameter λi(Xi) was both the mean and the variance of the Poisson distribution for a specific 

sampled district i. The sampled district-level field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented exploratory observational exploratory predictors data was log-transformed before the 

regression-based quantitative data analyses to normalize the distribution and minimize residual standard error. The 

regression analyses assumed independent counts (i.e., ni), taken at the sampled district-level locations i=1, 2…n. The 

Poisson regression models assumed the response variable Y had a Poisson distribution and assumed the logarithm of 

its expected value  was modeled by a linear combination of the spatiotemporal-sampled district-level covariate 

coefficients. This expression was written more compactly as  where x was an n+1-dimensional vector 

consisting of n independent variables concatenated to 1 and, thus, θ was simply a linearly linked to b. Therefore, in 

our Poisson model, θ was an input vector x and the predicted mean of the associated Poisson distribution rendered 

from the sampled district-level explanatory covariate coefficient estimates which in this research was provided by 

 but, only if X ε R
n 

was a vector of the independent variables. Thereafter, the Poisson model took 

the form   where a ε R
n

 and b ε R . Positing salient error estimators using 

Poisson-derived regression estimates, the maximization of an auto-Gaussian log-likelihood function and a set of 

eigenvectors where lamda is the sub-space of R
n
 can identify and quantify malaria-related observational covariate 

coefficients (Jacob et al. 2011c). The Gaussian distribution is a continuous probability distribution that is often used 

as a first approximation to describe real-valued random variables that tend to cluster around a single mean value
 

(Hosmer and Lemeshew 2002).  

In our regression framework the district-level data were denoted by matrix Xi, which was constructed  employing a 

1×p vector of district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented 

exploratory observational exploratory observational predictor values for a specific resampled location i. The 

expected value of these data was given by: μi(Xi)=ni(Xi) exp(Xiβ) where, β was the vector of non-redundant 

parameters and the Poisson specified parameter estimators  were then  rendered by λi(Xi)=μi(Xi)/ni(Xi) (2.2). 

Thereafter, the Poisson regression models were generalized by introducing an unobserved heterogeneity term for the 

sampled observational variables (i). Thus, the district-level spatiotemporal-sampled data was assumed to differ 

randomly in a manner that was not fully accounted for by the explanatory covariate error coefficient estimates. 

These distributions were then formulated as  where the unobserved heterogeneity 

term  was independent of the vector of regressors ; thus, the distribution of  conditional on  and  

was Poisson with a conditional variance of  : . We then let  be the 

probability density function (pdf) of . Then, the distribution , was no longer conditional on  in the  . 

Thereafter, spatiotemporal-sampled district-level linear malarial model district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented exploratory observational exploratory predictors residuals were 

obtained by integrating with respect to :  . 

http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Independent_variables
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We noticed that the district-level geopredictive autoregressive malaria geopredictive model error residuals 

contained a constant term. As such, it was necessary to assume that  in order to identify the 

mean of the distributions (see Jacob et al. 2009d). We assumed that  followed a gamma ( ) distribution with 

and :  where  was the gamma 

function and  was a positive sampled malarial-related parameter. Thus, the density of  in the time series-

dependent district-level regression models was Xi which in this research was further quantified using the equation: 

= = = = 

 (2.3) 

Unfortunately, extra-Poisson variation was detected in the residual variance estimates in the models. Evidence of 

overdispersion indicates inadequate fit of the Poisson model
 
(Hosmer and Lemeshew 2002). A common way to deal 

with overdispersion for counts is to use a Generalized Linear Model (GLM) framework, where the most common 

approach is a ‗‗quasi-likelihood,‘‘ with Poisson-like assumptions (i.e., quasi-Poisson) or a negative binomial model 

(see Hosmer and Lemeshew 2002). Extra-binomial (i.e., extra Poisson) variation occurs when discrete data comes in 

the form of counts or proportion that display greater variability than would be geopredicted when fitting a model 

which can be resolved using a negative binomial regression (Cressie 1993). As such, we constructed a robust 

negative binomial regression with a non-homogenous, gamma distributed mean by making the by incorporating 

 in equation 2.1 as in Jacob et al (2010a). The negative binomial distribution was then rewritten as 

. Thus, the negative binomial distribution 

was derived as a gamma mixture of the Poisson-related malarial random variables. The conditional mean in the 

models was then  and conditional variance 

was  . 

To further estimate the spatiotemporal malarial district-level cluster-based regression models, we specified 

DIST=NEGBIN (p=1) in the MODEL statement in PROC REG. The negative binomial model NEGBIN1, set 

 then had the variance function , which was linear in the mean. The log-likelihood 

function of the NEGBIN1 regression model was thereafter derived from the equation: 

= = . The gradient for the models was 

then  and  . 

In this research, the negative binomial regression model variance function , was referred 

to as the NEGBIN2 model. To estimate this model, we specified DIST=NEGBIN (p=2) in the MODEL statements. 

A test of the Poisson distribution was then performed by testing the hypothesis that . A Wald test of this 

hypothesis was also provided which then rendered the reported t statistic for the estimates in the negative binomial 

regression models. The log-likelihood function of the models (NEGBIN2) was thereafter generated by the equation 
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= = , where   was an integer and the 

gradient was  and . Jacob 

et al. (2010c)
 
considered a general class of negative binomial models with mean  and variance function  

for treating overdispersion in a time series-dependent predictive West Nile Virus (WNV) mosquito vector Culex 

quinquefasciatus habitat regression cluster-based model in Birmingham, Alabama. In their research, the NEGBIN2 

model with , was the standard formulation of the negative binomial model. Although the formulation derived 

employed  the same technique as in Jacob et al. (2010c)  there other values of , 

, into the district-level  models which interestingly  had the same density  except 

that  was replaced by . 

Shapiro–Wilk diagnostic test: The Shapiro–Wilk test was then used to test the null hypothesis that the 

spatiotemporal-sampled cluster-based georeferenced explanatory covariate coefficient estimates . In 

SAS/GIS, the primary test statistics for detecting the presence of non-normality is the Shapiro-Wilk (www.sas.com). 

Jacob et al. (2008b) used a Shapiro-Wilk test to check the normality assumption in a robust predictive geo-

autoregressive malaria mosquito larval habitat distribution model of Anopheline gambiae s.l. in multiple 

spatiotemporal datasets of georeferenced field and remote-sampled predictor covariate coefficients by constructing 

W statistic. In their research W represented the ratio of an optimal uncertainty error estimator of the residual 

variance based on the square of a linear combination of ordered statistic which in turn was based on the corrected 

sum of squares estimator of the variance. Several diagnostics for the assessment of model misspecifications due to 

dependence and spatial heterogeneity were then developed using as an application of the Lagrange Multiplier 

principle. In mathematical optimization, the method of Lagrange multipliers provides a strategy for finding the local 

maxima and minima of a function subject to equality constraints. Further, in Jacob et al. (2008b) the predictive 

autoregressive An. gambiae s.l. regression risk model were optimized employing maximize f(x,y) subject to 

g(x,y)=C. They then introduced a new explanatory observational variable (λ) into the model and studied the 

Lagrange function which was then defined as . The model residuals revealed 

that when   was a maximum of for any constrained problem in the model, then there existed  such 

that  was a stationary point for the Lagrange function. Additionally, in the model the district-level 

stationary points were those points that where the partial derivatives of  were zero,( i.e. ).  

In this research constructed a Shapiro-Wilk test statistic [i.e., ]in SAS/GIS. We noticed in our 

regression-based malaria model when X(1) was the ith order statistic, (i.e., the ith-smallest number in the district-

level sample dataset);   was the sample mean; and, the constants  were  rendered 

by where  and m1…,Mn. Additionally, the residual 

expected uncertainty values from the order statistics of the i.i.d. random district-level  malarial-related  regressors 

was obtained from the standard normal distribution when  was the covariance matrix of those order statistics. To 

perform the test, the W statistic was initially constructed by considering the regression of ordered sample values in 

http://en.wikipedia.org/wiki/Null_hypothesis
http://www.sas.com/
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Stationary_point
http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Covariance_matrix
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SAS/GIS based on the corresponding expected normal order statistics, which was linear in this research for the 

distributed district-level populations. After W was calculated, the hypothesis of normality was rejected in the 

geopredictive autoregressive district-level malaria risk model residual error matrix since W was less than a quantile 

from any sampled value in the model 

 These district-level data were then furthered analyzed via a Q-Qin SAS/GIS. A Q-Q plot is a plot of the quantiles of 

two distributions against each other, or a plot based on estimates of the quantiles; the pattern of points in the plot is 

then used to compare the two distributions as in Anselin (1995). The main step in constructing our Q-Q plot was 

estimating the quantiles spatially derived from the sampled district-level georeferenced explanatory malarial-related 

covariate coefficients. If one or both of the axes in a Q-Q plot is based on a theoretical distribution with a continuous 

cumulative distribution function (CDF), all quantiles are uniquely defined and can be obtained by inverting the cdf 

in SAS/GIS ((http://webhelp.esri.com/arcgisdesktop/). If one or both of the axes in a Q-Q plot is based on a 

theoretical distribution with a continuous CDF, then all quantiles are uniquely defined and can be obtained by 

inverting the CDF (Anselin 1995). If a theoretical malarial-related probability distribution with a discontinuous CDF 

is one of the two distributions being compared, some of the quantiles may not be defined, so an interpolated quantile 

may be plotted (see Fotheringham 2002). If the Q-Q plot is based on time-series data, there are multiple quantile 

estimators in use (Cressie 1993). Rules for forming Q-Q plots when quantiles must be estimated or interpolated are 

called plotting positions (Anselin 1995) Jacob et al. (2011c) constructed a probability distribution with a 

discontinuous  cdf using interpolated quantile for urban malaria mosquito habitat mapping An. gambiae s.l. aquatic 

larval habitats in Kisumu and Malindi, Kenya.  

 To construct the district-level malarial regression Q-Q plot in this research it was necessary to use an interpolated 

quantile estimate so that quantiles corresponded to the respected underlying district-level probability distribution.  In 

the model, given the cumulative probability distribution functions F and G, with associated quantile functions F 
−1

 

and G
−1

 , the inverse function of the cdf in the district-level models represented  the quantile function. The Q-Q plot 

then drew the qth quantile of F against the qth quantile of G for a range of the sampled values of q. Thus, the Q-Q 

plot was a parametric curve, which was then indexed over [0,1] with the sampled malarial regression-based values in 

the real plane R
2
. Then we employed the formula k / n for k = 1, ..., n, as these were the quantiles that the sampling 

distribution realized in the models. Unfortunately, the last of these, n / n, corresponded to the 100th percentile – the 

maximum value of the theoretical distribution, which was infinite. To fix this, we shifted the sampled district-level  

georeferenced field/clinical/remote sampled malaria-related explanatory hyperendemic transmission oriented 

covariate coefficient estimates over, using (k − 0.5) / n, and spaced the sampled points evenly in the uniform 

distribution, using k / (n + 1). By so doing, a probability plot was generated where the quantiles were the rankits, 

(i.e., the quantile of the expected value of the order statistic of a standard normal distribution). In GIS-based 

statistics, rankits of a set of data are the expected values of the order statistics of a sample from the standard normal 

distribution which  are primarily used as a graphical technique for normality testing 

(http://webhelp.esri.com/arcgisdesktop/)) The district-level  Q-Q plots were then compared the shapes of the 

distributions while providing a graphical view of how the properties such as georefernced habitat location, scale, and 

skewness were similar or different in the two distributions. 

In terms of heuristics for the quantiles, the comparison district-level distributions we employed the formula k/(n + 1) 

as in Jacob et al. (2011c) . Although several different formulas have been used or proposed as symmetrical plotting 

positions for malarial-related explanatory covariate coefficients such formulas have the form (k − a)/(n + 1 − 2a) for 

some value of a in the range from 0 to 1/2, which commonly renders a range between k/(n + 1) and (k − 1/2)/n. 

However, our district-level model residuals could not generate an accurate depiction of the data as they were highly 

non-Gaussian. Although the district-level georefernced points plotted in the SAS/GIS-oriented Q-Q plot where non-

decreasing when viewed from left to right as expected (see Anselin 1995), the non-normality inherent in the sampled 

district- level covariate coefficients could not be cartographically defined and hence displayed. If the two 

distributions being compared are identical, the Q-Q plot follows the 45° line y = x. (www.esri.com). Further, if  

sampled distributions agree after linearly transforming the values in one of the distributions, then the Q-Q plot 

follows some line, but not necessarily the line y = x.  In our district-level malarial cluster-based regression model 

residuals the Q-Q plot was not flatter than the line y = x, and as such the distribution plotted on the horizontal axis 

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Q-Q_plot#Plotting_positions
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Quantile_function
http://en.wikipedia.org/wiki/Parametric_equation
http://en.wikipedia.org/wiki/Normal_probability_plot
http://en.wikipedia.org/wiki/Rankit
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Graphical_technique
http://en.wikipedia.org/wiki/Normality_test
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was more dispersed than the distribution plotted on the vertical axis. Conversely, the general trend of the Q-Q plot 

was not steeper than the line y = x, and as such, the distribution plotted on the vertical axis was less dispersed than 

the distribution plotted on the horizontal axis. Generally, Q-Q plots delineating time series-dependent georeferenced 

malarial–related regression-based covariate coefficients are often arced, or "S" shaped, indicating that one of the 

distributions is more skewed than the other, or that one of the distributions has heavier tails than the other(Jacob et 

al. 2011c, Jacob et al. 2009d). 

Although the Q-Q plots rendered from the time series dependent predictor covariate coefficients was based on 

accurately tabulated quantiles, the Q-Q plot was  not able  to quantize which georeferenced district-level  point in 

the Q-Q plot determined a given quantile. For example, it was not possible to determine the median of the district-

level plotted distributions. Commonly Q-Q plots indicate deciles to make determinations such as this possible. The 

slope and position of the district-level malarial regressors between the quantiles did not render a measure of the 

relative district-level geolocation and relative scale of the samples. If the median of the distribution plotted on the 

horizontal axis is 0, the intercept of a regression line is a measure of location, and the slope is a measure of scale 

(Cressie 1993). The distance between medians of relative district location was not reflected in the district-level Q-Q 

plots. The probability plot error correlation coefficients (i.e., the correlation coefficient between the paired sample 

quantiles) was thus not quantifiable. Commonly in a malarial-related cluster-based regression model the closer the 

correlation coefficient is to one, the closer the distributions are to being shifted, scaled versions of each other (see 

Jacob et al. 2009d). Further, for malarial-related distributions with a single shape parameter, the probability plot 

correlation coefficient plot provides a method for estimating the shape parameter by computing the correlation 

coefficient for different sampled spatiotemporal-sampled  values of the shape parameter, and thereafter uses the one 

with the best fit, just as if one were comparing distributions of different types (see Jacob et al. 2011c). In this 

research the use of Q-Q plots was not  able to quantitatively assess nor  compare the district-level distribution of the 

samples  to the standard normal distribution [i.e., N(0,1)], as in a normal probability plot.  

2.2 Autocorelation model: Initially, a misspecification perspective for performing a spatial autocorrelation 

estimation analysis using the district-level malarial indicators. The model was generated using the  

(i.e. regression equation) assuming the sampled data had autocorrelation disturbances. The model was also assumed 

that this data could be decomposed into a white-noise component, , and a set of unspecified and/or misspecified 

sub-models that had the structure


*





 EXBy

. White noise in a malaria-based model is a univariate or 

multivariate discrete-time stochastic process whose terms are independent and i.i.d. with a zero mean (Jacob et al. 

2008d). In this research, the misspecification term was . Quantification of the topographic patterns generated from 

the distribution of the sampled district-level georeferenced district-level field/clinical/remote sampled malaria-

related hyperendemic transmission oriented explanatory covariate coefficients was required to describe independent 

key dimensions of the underlying spatial processes in the sampled data and for defining a spatial pattern in the 

misspecification term. 

A spatial autoregressive (SAR) model was then generated that used an district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented exploratory explanatory variable Y, as a function of nearby 

sampled district–level covariate coefficients. In this research, Y had an indicator value I (i.e., an autoregressive 

response) and/or the residuals of Y which were values of nearby sampled Y residuals (i.e., an SAR or spatial error 

specification). For spatiotemporal modeling malarial-related regression parameter estimators, the SAR model 

furnishes an alternative specification that frequently is written in terms of matrix W (see Jacob et al. 2008 b,c). As 

such, its spatial covariance was a function of the matrix (I - ρ CD
-1

)(I - ρD
-1

C) = (I - ρ W
T
)(I - ρ W), where T 

denoted matrix transpose. The resulting matrix was symmetric, and was considered a second-order specification as it 

http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Pearson_product_moment_correlation_coefficient
http://en.wikipedia.org/wiki/Probability_plot_correlation_coefficient_plot
http://en.wikipedia.org/wiki/Probability_plot_correlation_coefficient_plot
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included the product of two spatial structure matrices (i.e., W
T
W) – adjacent sampled districts as well as those 

having a single intervening unit involved in the autoregressive function. This matrix restricted positive values of the 

autoregressive parameter to the more intuitively interpretable range of . 

In this research district-level distance measurements were defined in terms of an n-by-n geographic weights matrix, 

C, whose  values were; 1 if the sampled district locations i and j were deemed nearby, and 0 otherwise. Adjusting 

this matrix by dividing each row entry by its row sum gave C1, where 1 was an n-by-1 vector of ones which 

converted this matrix to matrix W. The resulting SAR model specification, with no sampled georeferenced 

explanatory district-level field/clinical/remote sampled malaria-related explanatory hyperendemic transmission 

oriented covariate coefficients present (i.e., the pure spatial autoregression specification), took on the following 

form: 
εWY1Y   ρρ)-μ(1  

 ,  whereμ  was the scalar conditional mean of Y, and  ԑ was an n-by-1 error 

vector whose parameters were statistically i.d.d. normally random variates. The spatial covariance matrix for 

analyzing the sampled district-level georeferenced covariate coefficients was then calculated using 
21σ)]ρ -)('ρ -[()]μ-()'μ-E[(  WIWIΣ1Y1Y

, where E ( ) denoted the calculus of expectations, I was 

the n-by-n identity matrix denoting the matrix transpose operation, and 
2σ  was the error variance. 

Next, an autoregressive model specification was generated. The model was written as: 

where   represented the spatiotemporal-sampled field and remote district-level 

georeferenced parameter estimators of the malarial regression model, c was a constant and  was the white noise. 

When coupled with regression and the normal probability model, an autoregressive specification results in a 

covariation term by characterizing spatial autocorrelation and by denoting the autoregressive parameter that with ρ, 

a conditional autoregressive covariance specification (see Griffith 2003)  which in this research involved the matrix 

(I - ρ C), where I was an n-by-n identity matrix. In an geo-autoregressive expression; however, the response variable 

is on the left-side of the equation, while the spatial lagged version of this variable is on the right side (Glantz and 

Slinker 2001, Anselin 1988). Therefore, one of the main objectives in this research was to bring the spatially 

unlagged endogenous variable, , exclusively on the left-hand side of the district-level malarial regression equation 

in order to decorrelate the sampled georeferenced explanatory predictor covariate error coefficients. In this research, 

this was accomplished by expanding the matrix term: 

  







0

1

k

kkVVI 
 as an infinite power series, which 

was feasible under the assumption that the underlying spatial process in the sampled ecological datasets was 

stationary (see Bivand, 1984). The simultaneous autoregressive error model was then rewritten as  

. Substituting this transformation rendered: 
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








termcationmisspecifi
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As a part of deciphering the spatial surface of a sampled district-level malarial variable, it was important to consider 

how the sampled data feature attributes were connected. This was done by specifying the ―case‖ and ―order‖ of the 

connectivity. Generally speaking, regions can be connected with other neighboring regions either along an edge or at 

a shared point. Regions connected along edges and not at single points are referred to as having the rook's case 

adjacency; regions connected along edges as well as at single points are referred to as having the queen's case 

adjacency. We illustrated these relationships for both a regular square tessellation and an irregular tessellation per 

sampled district. For the square tessellation, the distinction between a point and an edge was easily visualized, while 

for an irregular tessellation the distinction was less important since it happened less often that polygons which met 

only at one point. As can be seen in the district‘s sampled there was only one region difference between the rook and 

queen specification for the irregular surface, while for the regular square tessellation there is always multiple 

neighbor difference 

Figure 4: Rook's case (blue) and Queen's case (red) adjacency and order of adjacency used for the  identifying 

clustering in the malarial –related estimators  
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We noticed that the misspecification term  in the district-level model remained uncorrelated 

with the exogenous variable, , as the standard OLS assumption of the disturbances, , were uncorrelated with the 

predictor covariate error coefficients generated from the district-level parameter estimators (b). The spatial lag 

model on the other hand, was expressed as: . Substituting the transformation 

rendered:

 





0k

kk XVy 
 and  

   








  
termcationmisspecifi

k

kk XVXy
1

. The misspecification term 

 included the exogenous variables . Consequently, the exogenous variables were 

correlated with the misspecification term. Under this condition, standard OLS results for the basic district-level 

malaria linear regression model , generated from the sampled georeferenced predictor error covariate 

coefficients, provided biased estimates  of the underlying regression based district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented exploratory observational exploratory parameters 

estimators. 

An autoregressive integrated moving average (ARIMA) model was then constructed in SAS/GIS based on 

generalization of an ARMA model. The model was referred an ARIMA(p,d,q) model where p, d, and q were non-

negative integers that refer to the order of the autoregressive, integrated, and moving average parts of the model 

respectively. ARIMA models form an important part of the Box-Jenkins approach to time-series modeling (Cressie 

1993). Commonly, these models are applied in such cases where data show evidence of non-stationarity or where an 

initial differencing step corresponding to the "integrated" part of the model can be applied to remove the non-

stationarity (Griffith 2003).In this research  an  ARIMA model  was fitted to  the time series dependent district-level 

data to predict future points in the series. Employing a time series of district-level field/clinical/remote sampled 

malaria-related explanatory hyperendemic transmission oriented covariate coefficient data Xt where t was an integer 

index and the a was  the sampled  predictor values, then an ARMA(p,q) model was given by: 

 where  was the lag operator, the  were  the parameter estimators  of the 

autoregressive part of the model, the  were  the parameters of the moving average part and  were error terms. 

The error terms  are generally assumed to be i.d.d. variables in a robust malarial cluster-based regression model 

using a normal distribution with zero mean (Jacob et al. 2009d). We assume now the polynomial had a 

unitary root of multiplicity d. In this research this value was rewritten as:  An 

ARIMA (p, d, and q) process then expressed this polynomial factorization property which was given by the model 

expression  and thus was classified as a particular case of an ARMA 

(p+d, q) process having the auto-regressive polynomial with some roots in the unity. ARIMA model with d>0 is not 

wide sense stationary (Cressie 1993). 

Initially, we constructed a time series district-level hyperendemic transmission-oriented regression model with AR 

(p) noise. Our time series  {[Y.sub.t]} of interest followed a linear regression model of the form  [Y.sub.t] = 

[x'.sub.t][beta] + [N.sub.t], t = 1,...,T, (1)  where [x.sub.t] = ([x.sub.t1],...,[x.sub.tr])' was a r-dimensional vector of 

deterministic or stochastic district-level  field and remote-sampled malarial regressors and [beta] were equal to 

([[beta].sub.1],...,[[beta].sub.r])'  which in this research represented  the vector of unknown parameters to be 

estimated in the risk model.  Initially, for quantitating the noise series in the endemic transmission oriented model  

we  assumed a stationary process following an AR(p) model,  [N.sub.t] = [[phi].sub.1][N.sub.t-1] + 

http://en.wikipedia.org/wiki/Box-Jenkins
http://en.wikipedia.org/wiki/Lag_operator
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Wide_sense_stationary
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[[phi].sub.2][N.sub.t-2] +...+[[phi].sub.p][N.sub.t-p] + [[epsilon].sub.t], (2) where {[[epsilon].sub.t]} was  the  white 

noise process  with mean 0 and variance [[[sigma].sup.2].sub.[epsilon]]. The AR(p) district-level malarial 

hyperendemic transmission-oriented model was then written as [phi](B)[N.sub.t] = [[epsilon].sub.t], where [phi](B) 

= 1 - [[phi].sub.1]B-...-[[phi].sub.p][B.sup.p]. We noticed that in our model for {[N.sub.t]} to be stationary, all roots 

of [phi](B) = and t had be greater than 1 in absolute value. The autocovariance function of the hyperendemic 

district-level transmission-oriented model  -[gamma](l) = cov([N.sub.t], [N.sub.t+l]) of {[N.sub.t]} which then 

satisfied the difference equation [gamma](l) = [[phi].sub.1][gamma](l - 1) + [[phi].sub.2][gamma](l - 2) +...+ 

[[phi].sub.p] [gamma](l - p), l [greater than or equal to] 1, with [gamma](0) = [[[sigma].sup.2].sub.[epsilon]]/[delta], 

where [delta] = 1 - [[phi].sub.1][[rho].sub.1] - [[phi].sub.2][[rho].sub.2]-...-[[phi].sub.p][[rho].sub.p] and [rho]l = 

[gamma](l)/[gamma](0). Given a sample of T observations,  if Y =([Y.sub.1],...,[Y.sub.T])' and N = 

([N.sub.1],...,[N.sub.T])'  then T x 1 data and the  noise vectors can be  efficiently quantitated by  letting  [epsilon] = 

([[[epsilon].sup.*].sub.1],..,[epsilon].sup.*].sub.p],in the hyperendemic district level transmission-oriented model  

then [[epsilon].sub.p+1],...,[[epsilon].sub.T])'.intentionally would bias estimates in the time series regression models 

employing REML. 

In the REML approach a particular form of maximum likelihood estimation was employed which did  not  utilize 

base estimates for determining  the maximum likelihood fit of all the information, but instead used a likelihood 

function calculated from a transformed set of spatiotemporal malarial related district-level field/clinical/remote 

sampled malaria-related explanatory hyperendemic transmission oriented covariate coefficients estimators, so that 

nuisance parameters had no effects. The case of variance component estimation, the original data set was replaced 

by a set of contrasts calculated from the sampled  data, and the likelihood function was then calculated from the 

probability distribution of these contrasts, according to the hyperendemic district-level malarial transmission-

oriented risk model for the complete data set. In particular, in this research the REML was used as a method for 

fitting linear mixed models. In contrast to the earlier MLE, REML can produce unbiased estimates of variance and 

covariance parameters (Cressie 1993). The idea underlying our REML estimation was put forward by (Bartlett 

1937). The first description of the approach applied to estimating components of variance in unbalanced data was by  

Patterson (1971), although they did not use the term REML. A review of the early literature was given by Harville 

(1977)
 
REML. Fortunately, REML  estimation is available in a number of general-purpose statistical software 

packages, including Genstat (the REML directive), SAS (the MIXED procedure), SPSS (the MIXED command), 

STATA (the xtmixed command), and R (the lme4 and older nlme packages), as well as in more specialist packages 

such as MLwiN, HLM, ASReml, Statistical Parametric Mapping and CropStat 

We then defined the T x r matrix X = [[x.sub.1],...,[x.sub.T]]', and assumed  that X is of full rank r a which satisfies 

the Grenander conditions. These conditions on the regressors under which the OLS estimator  are consistent but they 

are weaker than the assumption on the regressor X that limn->infinity(X'X)/n is a fixed positive definite matrix, (see, 

e.g., Anderson 1971). Briefly, with [d.sub.ij](h) = [[[sigma].sup.T-h].sub.t=1] [x.sub.i,t+h][x.sub.jt],h = 0, 1, ..., the 

Grenander conditions assumed that [d.sub.ii](0) [right arrow] [infinity], [[x.sup.2].sub.i,T+1]/[d.sub.ii](0) [right 

arrow] 0, and lim [d.sub.ij](h)/[square root][d.sub.ii](0)[d.sub.jj](0) [equivalent] [r.sub.ij](h) exists as T [right arrow] 

[infinity], for i,j = 1,...,r, and h = 0, [+ or -]1, [+ or -]2,..., and thus  we assumed the matrix of the limits of elements 

{[r.sub.ij](0)} was positive definite (nonsingular). Then the model was expressed in matrix form as Y = X[beta] + N, 

P'N = [epsilon], where the T x T transformation matrix P'  was the  lower triangular with its first p diagonal elements 

equal to [[delta].sup.1/2], [([delta]/[[delta].sub.1]).sup.1/2],...,[([delta]/[[delta].sub.p-1]). sup.1/2]. By so doing,  its 

remaining diagonal elements was equivalent  to 1, . Additionally  elements in the (i,j)th position were  equal to -

[[[phi].sup.*].sub.i-j,i-1] for j = 1 ,..., i-1 and i = 2 ,..., . Further p, in the seasonal malarial district level endemic 

transmission-oriented risk model was equal to -[[phi].sub.i-j] for j = i-p ,..., i-1 when i was greater than p. 
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http://en.wikipedia.org/wiki/Nuisance_parameter
http://en.wikipedia.org/wiki/Variance_component
http://en.wikipedia.org/wiki/Contrast_(statistics)
http://en.wikipedia.org/wiki/Mixed_model
http://en.wikipedia.org/wiki/Unbiased
http://en.wikipedia.org/wiki/M._S._Bartlett
http://en.wikipedia.org/w/index.php?title=Desmond_Patterson&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Desmond_Patterson&action=edit&redlink=1
http://en.wikipedia.org/wiki/Statistical_software
http://en.wikipedia.org/wiki/Genstat
http://en.wikipedia.org/wiki/SAS_(software)
http://en.wikipedia.org/wiki/SPSS
http://en.wikipedia.org/wiki/Stata
http://en.wikipedia.org/wiki/R_(programming_language)
http://cran.r-project.org/web/packages/lme4/index.html
http://cran.r-project.org/web/packages/nlme/index.html
http://en.wikipedia.org/wiki/MLwiN
http://en.wikipedia.org/wiki/HLM
http://en.wikipedia.org/wiki/ASReml
http://en.wikipedia.org/wiki/Statistical_Parametric_Mapping
http://archive.irri.org/science/software/cropstat.asp


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

84 

 

In the model the  first p rows of P', the elements [[[phi].sup.*].sub.ik] = [[phi].sub.ik] 

[([delta]/[[delta].sub.k]).sup.1/2], i = 1 ,..., k, where [[phi].sub.1k],...,[[phi].sub.kk], for k = 1 ,..., p-1,which were  

solutions for coefficients [[phi].sub.1],...,[[phi].sub.k] w .Thereafter, the system of the first k  ARMA equations 

iwith p set was equal to k, and [[delta].sub.k] = 1 - [[phi].sub.1k][[rho].sub.1] - [[phi].sub.2k][[rho].sub.2] -

phi].sub.kk][[rho].sub.k].Thereafter , [[phi].sub.11] = [gamma](1)/[gamma](0) = [[rho].sub.1] and [[delta].sub.1] = 1 

- [[rho].sup.2].sub.1]as cov([epsilon]) = [[[sigma].sup.2].sub.[epsilon]]I which followed the covariance matrix of N 

which in this research was  cov(N) = cov([P'.sup.-1][epsilon]) = [[[sigma].sup.2].sub.[epsilon]][P'.sup.-1][P.sup.-

1]=[[[sigma].sup.2].sub.[epsilon]]V,where [V.sup.-1] = PP' 

Results  

By employing the NDVI we were able to obtain a derivative of surface reflectance  of the vegetated canopied 

explanatory covariates with respect to  QuickBird (V)and (NIR) wavelengths. Initially, the Band Math function of 

ENVI 4.8 was used to calculate a NDVI. Therefater we color balanced the natural color QuickBird imagery 

collected over the Ugandan epidemiological study site.  We then exported these layers as a GeoTIFF from ENVI, to 

ArcMap to complete the analysis of the   riverine larval habitat vegetation parameter estimators extracted with a 

NDVI calculation. Our  NDVI was  calculated as : NDVI = (Band 4 – Band 3) / (Band 4 + Band 3).Once this value 

was calculated for every  larval habitat  pixel, we created a colorized image where all the healthy vegetation in the 

scene was red (typically a value of ~0.35 for NDVI) NDVI has a range of possible values from -1.0 to 1.0 (Tucker 

1991).Next,  we performed  a filtering exercise  and displayed the NDVI in ArcMap  for determining the lowest 

NDVI value that was associated to  all the green vegetation parameters  at the study sites. This value could have 

easily been adjusted upward or downward as the fidelity of the analysis required. To decide this value, we added 

color-balanced natural color imagery as the top layer and then added the NDVI layer below. By clicking on multiple 

pixels with the Identify Tool, all district-level vegetation canopy-related explanatory covariate coefficients were not 

quantitated.  

For the next step in the NDVI analysis, we created sequential classes of NDVI values and then color coded them 

accordingly. To complete this step, we navigated to the Symbology Tab under the Layer Properties of the NDVI 

TIFF file. We switched the symbology type to Classified and calculated histograms. Pressing the Classify button, we 

then set the Exclusion values to -1.0 to 0.09. This procedure allowed ArcMap to filter out all the vegetated canopied 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented explanatory 

covariate ceofficent values for classifying the data into clusters of similar values. We then classified by Natural 

Breaks (i.e.,jenks) with 3 classes to show a schema with less ability to separate riverine larval habitat unhealthy 

vegetation from the most vigorous. Finally, we created a copy of this NDVI layer following the same steps above 

but this time created a classification schema with 7 classes. For both of these schemas, we chose the same color 

ramp whereby unhealthy vegetation was in red; the healthiest vegetation in bright purple; and vegetation with 

intermediate health in yellow.  

Initially, we constructed a Poisson regression model using the spatiotemporal-sampled district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented exploratory observational 

exploratory observational predictor measurement values. Our model was generalized by introducing an unobserved 

heterogeneity term for each sampled district-level observation . The weights were then assumed to differ randomly 

in a manner that was not fully accounted for by the other spatiotemporal-sampled covariate coefficients. In this 

research this linear district-level process was formulated as  where the unobserved 

heterogeneity term  was independent of the vector of regressors . Then the distribution of  was 

conditional on  and was Poisson with conditional mean and conditional variance :  

 . We then let  be the pdf of . Then, the distribution  was no 
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longer conditional on . Instead it was obtained by integrating  with respect to 

: . We found that an analytical solution to this integral existed in the 

district-level linear model when  was assumed to follow a non-homogenous gamma distribution.  

  Our count values uncertainty model also assumed that , was the vector of the explanatory uncertainty covariate 

coefficients , which was also independently Poisson distributed with 

and the mean parameter — that is, the mean number of district-level 

events per spatiotemporal period — was given by  where   was a  parameter vector. 

The intercept in the model was  then and the coefficients for the  regressors were . Taking the 

exponential of ensured that the mean parameter  was nonnegative. Thereafter, the conditional mean was 

provided The district-level predictive geo-autoregressive parameter estimators were 

then evaluated using . Note, that the conditional variance of the count random 

variable was equal to the conditional mean (i.e., equidispersion) in our model [e.g.,  ]. In 

a log-linear model the logarithm of the conditional mean is linear (Haight 1967). The marginal effect of any district-

level regressors in the model was then provided by . Thus, a one-unit 

change in the th regressor in the regression model led to a proportional change in the conditional mean  of 

.  

Given the spatiotemporal-sampled dataset of district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented exploratory observational exploratory parameter estimators (i.e;, θ ) and an 

input vector x, the mean of the predicted Poisson distribution was then provided by and thus, the 

Poisson distribution's pmf of the sampled district-level explanatory uncertainty covariate coefficients was given by 

. The pmf in a spatiotemporal predictive hierarchical spatial malaria regression-based  

model is often the primary means of defining a discrete probability distribution, and such functions exist for either 

scalar or multivariate random variables, given that the distribution is discrete (Jacob et al. 2008b). Since the sampled 

data consisted of m vectors  , along with a set of m values  then, for the 

district-level parameter estimators θ, the probability of attaining this particular set of data was provided 

by . By the method of maximum likelihood, we found the set of θ 

that made this probability as large as possible. To do this, the equation was first rewritten as a likelihood function in 

terms of θ:  Note, that the expression on the right hand side in our model had not 

actually changed. 

Next, we used the log-likelihood: . Notice that the 

parameters θ only appeared in the first two terms of each term in the summation. Therefore, given that we were only 
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interested in finding the best value for θ we dropped the yi! and simply wrote . To 

find a maximum, we solved an equation which had no closed-form solution. However, the negative 

log-likelihood (LL)[i.e.,, ] was a convex function, and so standard convex optimization and  gradient 

descent techniques was applied to find the optimal value of θ . 

We found that given a Poisson process, was given by the limit of a binomial distribution 

 in the district-level district-level malaria-related hyperendemic 

transmission oriented model thus;  Letting the sample size   become 

large, the distribution then approached P when , 

, , and  

Note, that the sample size had  completely dropped out of the probability function, which in this research  had the 

same functional form for all values of .  

As expected, the Poisson distribution was normalized so that the sum of probabilities equaled  1, since 

The ratio of probabilities was then  given by 

 The Poisson distribution reached a maximum 

when  where  was the Euler-Mascheroni constant and   was a harmonic 

number, leading to the transcendental equation  which  in this research  could not be solved 

exactly for . The Euler–Mascheroni constant is a mathematical constant recurring in analysis and number theory 

(Hosmer and Lemeshew 2002). 

We noticed that the moment-generating function of the Poisson distribution was given by 

𝑀=𝑒−𝑣𝑒𝑣𝑒𝑡=𝑒𝑣(𝑒𝑡−1),  and 𝑀=(𝑣𝑒𝑡)2𝑒𝑣(𝑒𝑡−1)+𝑣𝑒𝑡𝑒𝑣(𝑒𝑡−1), when ,  

so  The raw moments  was  then computed directly by summation, which yielded an unexpected 

connection with the exponential polynomial   and Stirling numbers of the second kind, 

),(
!

)(
0 1

knS
k

x
k

n

k

kn

kx

n xk
xe 



 



 which in this research was the Dobiński's formula. The expression was then 

given by Dobinski's formula as the nth moment of the Poisson distribution had an expected value 1. This then lead 

to 𝑣1+𝑣,(1+3𝑣+𝑣2) and . The central moments was thereafter computed as   so 

the mean, variance, skewness, and kurtosis were ,  and 

respectively. 
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The characteristic function for the Poisson distribution in the district-level Poisson geopredictive model was 

then evaluated using Φt=ev(eit−1) where the cumulant-generating function was 

,so . The mean deviation of the Poisson distribution in 

our mode was of the Ugandan district level prevalence rates was then given by.𝑀𝐷=2𝑒−𝑣𝑣𝑣+1𝑣! The Poisson 

distribution was then expressed in terms of  , and the rate of changes was equal to  . The 

moment-generating function of the Poisson distribution generated from the sampled district-level explanatory 

variables was then provided by 𝑀(𝑡)≡𝑒𝑣1+𝑣2(𝑒𝑡−1). Given a random variable and a probability distribution 

function , if there existed an  such that  for , where denotes the expectation 

value of , then  is called the moment-generating function (Papoulis 1984). Commonly, for a continuous 

distribution in a robust malaria-related linear regression 

model , and  , where is the th 

raw moment  (Jacob et al. 2009d). 

 In this research for independent  and , the moment-generating function in our  spatiotemporal malarial risk 

model satisfied   and . If the independent variables 

,…,  have Poisson distributions with parameters , then 



N

j
jxX

1

 has a Poisson 

distribution with parameter 



N

j

j

1

 . (Haight 1967). In our linearized data distribution this was evident since the 

cumulant-generating function was  and  

We then tested for overdispersion with a likelihood ratio test based on Poisson and negative binomial distributions. 

This test quantitated the equality of the mean and the variance imposed by the Poisson distribution against the 

alternative that the variance exceeded the mean in the district-level linear malarial model. For the negative binomial 

distribution, the variance in our spatiotemporal model was equal to the mean + k mean
2
, when and the 

negative binomial distribution reduced to Poisson when k=0. It is important to remember that the null hypothesis 

was H0 : k=0 and the alternative hypothesis was Ha  : k>0 . To carry out the test, we employed the following steps 

initially and then ran the model using negative binomial distribution and a record log likelihood (LL) value. We then 

recorded LL for the Poisson model. We then used the likelihood ratio (LR) test, that is, we computed LR statistic, -

2(LL (Poisson) – LL (negative binomial)). The asymptotic distribution of the LR statistic had probability mass of 

one half at zero and one half – chi-sq distribution with 1 df. To test the null hypothesis further at the significance 

level , we then used the critical value of chi-sq distribution corresponding to significance level 2, that is we 

rejected H0 if LR statistic .  

Next, we assumed that the district-level malarial model was based on the log of the mean, , which in this research 

was a linear function of independent variables, log() = intercept + b1*X1 +b2*X2 + ....+ b3*Xm. This log-

transformation implied that  was   the exponential function of independent variables where  = exp(intercept + 

b1*X1 +b2*X2 + ....+ b3*Xm). Instead of assuming as before that the distribution of the district level parameter 

estimators [i.e.,Y], and the number of sampling occurrences was Poisson, we now assumed that Y had a negative 
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binomial distribution. That meant, in particular, relaxing the assumption about equality of mean and variance (i.e., 

Poisson distribution property), since the variance of negative binomial was equal to  + k
2 

, where  was a 

dispersion parameter. The maximum likelihood method was then used to estimate k as well as the parameter 

estimators of the model for log(). Fortunately, the SAS syntax for running negative binomial regression was almost 

the same as for Poisson regression. The only change was the dist option in the MODEL statement. Instead of dist = 

poisson, dist = nb was used.  

Results from both a Poisson and a negative binomial (i.e., a Poisson random variable with a gamma distrusted mean) 

in SAS/GIS revealed that the district-level field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented exploratory observational predictors were highly significant, but furnished virtually no predictive power. In 

other words, the sizes of the population denominators were not sufficient to result in statistically significant 

relationships, while the detected relationships were inconsequential. 

 Inclusion of indicator variables denoting the time sequence and the district location spatial structure was then 

articulated with Thiessen polygons, (see Figure 1a) which also failed to reveal meaningful predictors. Further, 

Figure 1b implied presence of additional noise in the data for 2010, attributable to an expansion of the districts; thus, 

for this data analysis we retained the original 80 districts for space-time consistency. 

Under the regression model and the normality assumption [epsilon] [sim] N(0,[[[sigma].sup.2].sub.[epsilon]]I), the 

log-likelihood function was l([beta],[phi],[[[sigma].sup.2].sub.[epsilon]]) = - T/2 log(2[pi]) - T/2 

log([[[sigma].sup.2].sub.[epsilon]]) - 1/2 log [absolute val. of V] - 1/2[[[sigma].sup.2].sub.[epsilon]] S([beta],[phi]),  

where [phi] = ([[phi].sub.1],...,[[phi].sub.p])' and S([beta],[phi]) = (Y-X[beta])' [V.sup.-1] (Y-X[beta]) was the sum 

of squares function. Note that [absolute val. of V] = [absolute val. of [V.sub.p]], where 

[[[sigma].sup.2].sub.[epsilon]][V.sub.p] was the covariance matrix of p consecutive values from the AR(p). For 

example, in the AR(2) Ugandan malarial model, p = 2, and so [absolute val. of V] = [absolute val. of [V.sub.2]] = 

(1-[[[rho].sup.2].sub.1])/[[delta].sup.2].  

To derive the likelihood equations, we employed S([beta],[phi]) which in this research  was expressed as a quadratic 

function of the parameter [phi]  as in Box, Jenkins, and Reinsel 1994, p. 298). We then used the following two 

equivalent expressions for S([beta],[phi]):  S([beta],[phi]) = Y'[V.sup.-1]Y - 2[beta]'X'[V.sup.-1]Y + 

[beta]'X'[V.sup.-1]X[beta]  and  S([beta],[phi]) = [[[sigma].sup.T].sub.t=p+1] [[[epsilon].sup.2].sub.t] + 

[[[epsilon].sup.*2].sub.1] + ... + [[[epsilon].sup.*2].sub.p] = N'PP'N = [C.sub.00] - 2[phi]'[c.sub.p] + 

[phi]'[C.sub.p][phi],  where [C.sub.00] = [[[sigma].sup.T].sub.t=1] [[N.sup.2].sub.t], [c.sub.p] = ([C.sub.10], 

[C.sub.20],...,[C.sub.p0])', [C.sub.p] when  the  p x p symmetric matrix with (i,j)th element [C.sub.ij], and the 

elements [C.sub.ij] were "symmetric" sums of squares and lagged cross-products of the [N.sub.t] ([N.sub.t] = 

[Y.sub.t] - [x'.sub.t][beta]),which in this research was  provided parsimoniously by [C.sub.ij] = [[[sigma].sup.T-

j].sub.t=i+1] [N.sub.t][N.sub.t-i+j] = [C.sub.ji], with T - i - j terms in the sum. The (i,j)th element of [C.sub.p] haf 

expected value E([C.sub.ij]) = (T - i - j)[gamma](i - j)i,j = 1,..., p.  

From the foregoing expression, the first partial derivatives of S([beta],[phi]) were [partial]S/[partial][beta] = -

2X'[V.sup.-1]Y + 2X'[V.sup.-1]X[beta]  and  [partial]S/[partial][phi] = 2([C.sub.p][phi]-[c.sub.p]),  with 

E[[partial]S/[partial][beta]] = 0 and E[[partial]S/[partial][phi]] = 2{E([C.sub.p])[phi] - E([c.sub.p])}. We noticed  

that the ith element of E([C.sub.p])[phi] - E([c.sub.p]), [[[sigma].sup.p].sub.j=1] E([C.sub.ij])[[phi].sub.j] - 

E([C.sub.i0]), was equal to  [[[sigma].sup.p].sub.j=1] (T - i - j)[gamma](i - j)[[phi].sub.j] - (T - i)[gamma](i) = - 

[[[sigma].sup.p].sub.j=1]j[gamma](i - j)[[phi].sub.j],  using the autocorrelation equations (3). The likelihood 

equations were then   [partial]l/[partial][phi] = - 1/2 [partial]/[partial][phi] log [absolute val. of V] -

1/[[[sigma].sup.2].sub.[epsilon]] ([C.sub.p][phi]-[c.sub.p]) = 0, (5)  [partial]l/[partial][beta] = 

1/[[[sigma].sup.2].sub.[epsilon]] (X'[V.sup.-1]Y - X'[V.sup.-1]X[beta]) = 0, (6)  
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The transformation from spherical coordinates (r, θ, φ) to Cartesian coordinates (x1, x2, x3), in the autocorrelation 

model was then  given by the function F : R
+
 × [0,π] × [0,2π) → R

3
 with components: 

, ,  The Jacobian matrix for this coordinate change 

was The determinant  was r
2
 sin θ.   

An autoregressive model specification was then constructed in SAS/GIS to describe the autoregressive variance 

uncertainty estimates in the sampled data. A spatial filter (SF) model specification was also used to describe both 

Gaussian and Poisson random variables. The resulting SAR model specification took on the following form   (3.1) 

where μ was the scalar conditional mean of Y, and ε was an n-by-1 error vector whose elements were statistically 

independent and identically distributed (i.i.d.) normally random variates. The spatial covariance matrix for equation 

(3.1)regressed  the sampled district level covariate coefficients  using E [(Y - μl)' (Y - μl)] = Σ = [(I - ρ W')(I - ρ 

W)]-1ζ2, where E (●) denoted the calculus of expectations, I was the n-by-n identity matrix denoting the matrix 

transpose operation, and ζ2 was the error variance. 

In this research, two different spatial autoregressive parameters appeared in the spatial covariance matrix which for 

our Ugandan malarial-related  SAR model specification became:  (3.2)where the diagonal matrix of autoregressive 

parameters, <ρ >diag, contained two sampled parameters: ρ+ for those  district-level sampled covariate coefficient 

pairs displaying positive spatial dependency, and ρ. for those pairs displaying negative spatial dependency. For 

example, by letting ζ2 = 1 and employing a 2-by-2 regular square tessellation, for the vector  , enabled positing a 

positive relationship between the sampled covariates, y1 and y2, whereby a negative relationship between 

covariates, y3 and y4, existed and, no relationship between covariates y1 and y3 and between y2 and y4 was noted. 

This covariance specification then yielded:   (3.3)where I+ was a binary 0-1 indicator variable which denoted those 

district-level covariate coefficients  displaying positive spatial dependency, and I- was a binary 0-1 indicator 

variable denoting those sampled habitats displaying negative spatial dependency, using I+ + I- = 1. Expressing the 

preceding 2-by-2 example in terms of equation yielded:  We noticed that if either ρ+ = 0 (and hence I+ = 0 and I- = 

I) or ρ- = 0 (and hence I- = 0 and I+ = I), then equation (3.3) reduced to equation (3.1). This indicator variable 

classification was made in accordance with the quadrants of the corresponding Moran scatterplot generated using the 

sampled district level explanatory covariate coefficients. 

 To identify district level spatial clusters, Thiessen polygon surface partitioning were also generated to construct 

geographic neighbor matrices, which also were used in the spatial autocorrelation analysis. Entries in matrix were 1, 

if two sampled district-level georefernced endemic transmission-oriented explanatory covariate coefficients shared a 

common Thiessen polygon boundary and 0, otherwise. Next, the linkage structure for each surface was edited to 

remove unlikely geographic neighbors to identify pairs of sampled covariate coefficients sharing a common 

Thiessen polygon boundary. Attention was restricted to those district-level map patterns associated with at least a 

minimum level of spatial autocorrelation, which, for implementation purposes, was defined by |MCj/MCmax| > 

0.25, where MCj denoted the jth value and MCmax, the maximum value of MC. This threshold value allowed two 

candidate sets of eigenvectors to be considered for substantial positive and substantial negative spatial 

autocorrelation respectively. Because larval/pupal counts were being analysed, a Poisson spatial filter model 

specification was employed in this research  

The model specification was written as follows:  where μi was the expected mean district location i, μ was an n-by-1 

vector of expected  explanatory covariate coefficient counts, LN denoted the natural logarithm (i.e., the generalized 

linearized model link function), α was an intercept term, and η was the negative binomial dispersion parameter. This 
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log-linear equation had no error term; rather, estimation was executed assuming a negative binomial random 

variable.  

In terms of the eigenfunctions of the spatial weighted  matrix ,rhe upper and lower bounds for a spatial matrix 

generated using Moran‘s indices (I) were given by λmax(n/1TW1) and λmin(n/1TW1) where λmax and λmin which 

in this research was the extreme eigenvalues of Ω = HWH [23]. Hence, in this research, the eigenvectors of Ω were 

vectors with unit norm maximizing Moran's I. The eigenvalues of this matrix were equal to Moran's I coefficients of 

spatial autocorrelation post-multiplied by a constant. Eigenvectors associated with high positive (or negative) 

eigenvalues have high positive (or negative) autocorrelation (Griffith 2003).  

The diagonalization of the spatial weighting matrix generated from the field and remote-sampled district-level 

covariate coefficients consisted of finding the normalized vectors ui, stored as columns in the matrix U = [u1 ⋯ un], 

satisfying:  where Λ = diag (λ1 ⋯ λ n),  and  for i ≠ j. Note that double cantering of Ω implied that the eigenvectors 

ui generated from the ecological sampled district-level malarial-related covariate coefficients  were centered and at 

least one eigenvalue was equal to zero. Introducing these eigenvectors in the original formulation of Moran's index 

lead to considering the centered vector z = Hx. 

In this research, r was the number of null eigenvalues of Ω (r ≥ 1). These eigenvalues and corresponding 

eigenvectors were removed from Λ and U respectively. Equation 2.8 was then strictly equivalent to:, Moreover, it 

was demonstrated that Moran's index for a given eigenvector ui was equal to I(ui) = (n/1T W1)λ i so the equation 

was rewritten:  (3.9).The term cor2 (ui, z) represented the part of the variance of z that was explained by ui in the 

district-level model z = β i ui+ ei. This quantity was equal to. By definition, the eigenvectors ui were orthogonal, and 

therefore, regression coefficients of the linear models z = β i ui+ ei were those of the multiple regression model z = 

Uβ + ε = β iui + ⋯ + β n-r un-r + ε.  

In terms of the distribution of the error residuals in the seasonal district level malarial-related autocovariance matrix, 

the maximum value of I was not obtained by all of the variation of z, as explained by the eigenvector u1, which in 

this research did not correspond to the highest eigenvalue λ1 in the autocorrelation error matrix. In this research, 

cor2 (ui, z) = 1 (and cor2 (ui, z) = 0 for i ≠ 1) and the maximum value of I, was not deduced for Equation (3.9), The 

minimum value of I in the error matrix was not obtained as all the variation of z was not explained by the 

eigenvector un-r corresponding to the lowest eigenvalue λn-r generated in the model. This minimum value [e.g. Imin 

= λn-r (n/1TW1)] was also not derived.  By so doing, we were able to define a random effects estimate for each 

district. 

A one-dimensional Wiener process was then generated in SAS. The unconditional probability density function at a 

fixed time t: The expectation was zero:  

The variance, using the computational formula, is 

The covariance andcorrelation: 

The results for 

the expectation and variance follow immediately from the definition that increments have a normal distribution, 

centered at zero. Thus The results for the covariance and correlation follow 

from the definition that non-overlapping increments are independent, of which only the property that they are 

uncorrelated is used. Suppose that t1 < t2. 
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Substituting 

 we arrive 

at  Since W(t1) = W(t1)−W(t0) 

and W(t2)−W(t1), are independent,  

Thus The running maximum  of the model then  was qunatiated The joint 

distribution of the running maximum  and Wt 

was To get the unconditional distribution of , we 

integrated over −∞ < w ≤ m as The 

expectation then was 
[

. 

A Brownian scaling was then generated . For every c > 0 the process I in our 

geopredictive malaria-related district-level malaria-related model was  another Wiener process. The time process 

for 0 ≤ t ≤ 1 is distributed like Wt for 0 ≤ t ≤ 1.  A class of Brownian martingales was then 

generated. If a polynomial p(x, t) satisfies the PDE then the stochastic 

process is a martingale ( Cressie 1993) In our model is a martingale, which revealed 

that the quadratic variation of W on [0, t] was equal to t. It followed  that the expected time of first exit of W from 

(−c, c) was equal to c
2
. More generally, for every polynomial p(x, t) in the geopredictive malaria-related model the 

following stochastic process was a martingale:  where a was the 

polynomial Quantitative properties  of our model then quantitated using an 

iterated logarithm  which revealed that Local modulus of continuity: 

The Global modulus of continuity  was then 

The image of the Lebesgue measure on [0, t] under the 

district-level malarial risk map w had a density Lt(·). Thereafter, 

 was derived  for a wide class of functions f (namely: all 

continuous functions; all locally integrable functions; all non-negative measurable functions) in the model residual 

forecasts. The density Lt  was continuous. The number Lt(x) I at x of w on [0, t]. It was strictly positive for all x of 

the interval (a, b) where a and b were the least and the greatest value of w on [0, t], respectively. Treated as a 

function of two  sampled explanatory hyperendemic transmission oriented variables x and t, was still continuous. 
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Treated as a function of t (while x is fixed), the local time was a singular function corresponding to a measure on the 

set of zeros of w. 

Next, an ARIMA analysis of individual district time series revealed a conspicuous but not very prominent first-order 

temporal autoregressive structure in the district-level data. We initially derived the a posteriori estimate covariance 

matrix. Starting with our invariant on the error covariance we solved fro Pk|k  in   

We then substituted in the definition of   and  in   and 

 for  

 We then collected the error 

vectors  from   Since the measurement error 

vk in the geopredictive district level malaria-related hyperendemic trasnmission oriented coariate coefficients was 

uncorrelated with the other terms, this become 

 . Thereafter by the properties of 

vector covariance  this model 

became Then using our 

invariant on Pk|k-1 and the definition of Rk  the model became 

 This formula was valid for any 

value of  Kk in our model.   

Thereafter we generated a Kalman gain derivation. The Kalman filter is a minimum mean-square error estimator. 

The error in the a posteriori state estimation is  (Cressie 1993) Wethen saught to minimize the expected 

value of the square of the magnitude of this vector, . We assumed this procedure would be 

equivalent to minimizing the trace of the a posteriori estimate covariance matrix . By expanding out the terms 

in the geopredictive regression-based equation above we 

got: =

 The trace was then minimized when its 

matrix derivative with respect to the gain matrix which in this research was zero. Using the gradient matrix rules and 

the symmetry of the matrices involved we found  

that Solving this for Kk yielded the Kalman gain: 

and  This gain, was the optimal 

Kalman gain for our geopredictive malaria-related district-level model for yielding the  MMSE estimates  

We then simplified a posteriori error covariance formula for quantitating the district-level seasonal-sampled 

hyperendemic transmission oriented explanatory covariate coefficients. The formula used to calculate the a 

posteriori error covariance can be simplified when the Kalman gain equals the optimal value derived  from a 

forecasting model (Box and Jenkins 1976) Multiplying both sides of our Kalman gain formula on the right by SkKk
T
, 

it followed  that  Referring back to our expanded formula for the a posteriori error 

covariance,  was generated  which required 

cancelling out two terms  thus rendering 

 If arithmetic precision is unusually 

http://en.wikipedia.org/wiki/Singular_function
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Minimum_mean-square_error
http://en.wikipedia.org/wiki/Trace_(matrix)
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Matrix_calculus
http://en.wikipedia.org/wiki/Matrix_calculus#Identities
http://en.wikipedia.org/wiki/Minimum_mean-square_error


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

93 

 

low causing problems with numerical stability, or if a non-optimal Kalman gain is deliberately used simplifications 

cannot be applied; the a posteriori error covariance formula must be used (Griffith 2003). 

In this research the modified bessel function of the second kind is the function  was computed which was 

based on the solutions to the modified Bessel differential equation. function which is one of the solutions to the 

modified Bessel differential equation and is closely related to the Bessel function of the first kind . The above 

plot shows for , 2, ..., 5. The modified Bessel function of the first kind is implemented in SAS/GIS as 

BesselI[nu, z]. The modified Bessel function of the first kind can be defined by the contour integral 

where the contour encloses the origin and is traversed in a counterclockwise 

direction (Arfken 1985). In terms of ,  For a geopredictive district-

level malaria-related   hyperendemic transmission oriented explanatory covariate coefficients  measurement valus , 

the function was computed using  where is the gamma function. An integral 

formula[i.e.  ] was then employed [  which 

simplifies for an integer to  

The modified Bessel function of the second kind is implemented in SAS as BesselK[nu, z]. is closely related to 

the modified Bessel function of the first kind and Hankel function , 

= =   In our analyses  a sum formula for  

was tabulated as  

where

 

In these equations  was the digamma function  in  our model . We employed an = integral formula which 

was  which, for , simplified to 

We identified other identied  using   for 

and 

= =

which then generted  he following graphical outputs in SAS/GIS. 

http://en.wikipedia.org/wiki/Numerical_stability
http://mathworld.wolfram.com/ModifiedBesselDifferentialEquation.html
http://mathworld.wolfram.com/ModifiedBesselDifferentialEquation.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://reference.wolfram.com/mathematica/ref/BesselI.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/Integer.html
http://reference.wolfram.com/mathematica/ref/BesselK.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/HankelFunction.html
http://mathworld.wolfram.com/DigammaFunction.html
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The special case of  was then given as the integrals = = . 

The Kalman filtering equations provided an estimate of the state and its error covariance recursively in 

the geopredictive seasonal-sampled malaria-related risk model. In probability theory and statistics, a covariance 

matrix (also known as dispersion matrix or variance–covariance matrix) is a matrix whose element in the i, j position 

is the covariance between the i 
th

 and j 
th

 elements of a random vector (that is, of a vector of  random variables). 

Therefore each element  of the predictive malaria-related seasonal district level hyperendemic transmission oriented 

model was based on the vector of  a scalar random variable, either with a finite number of observed empirical values 

or with a finite or infinite number of potential values specified by a theoretical joint probability distribution of all the 

sampled field/clinical/remote random variables. Intuitively, the covariance matrix generalizes the notion of variance 

to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space 

cannot be characterized fully by a single number, nor would the variances in the x and y directions contain all of the 

necessary information; a 2×2 matrix would be necessary to fully characterize the two-dimensional variation 

The estimate and its quality depend on the system parameters and the noise statistics fed as inputs to the estimator. 

This section analyzes the effect of uncertainties in the statistical inputs to the filter. In the absence of reliable 

statistics or the true values of noise covariance matrices and , the expression 

no longer provides the actual error 

covariance. In other words, . In most real time applications the 

covariance matrices that are used in designing the Kalman filter are different from the actual noise covariances 

matrices(Cressie 1993). This sensitivity analysis described the behavior of the estimation error covariance in our 

district level hyperendemic transmission oriented risk model when the noise covariance as well as the system 

matrices and  were  fed as inputs to the filter were incorrect. Thus, the sensitivity analysis described the 

robustness of sampled district-level predictive malaria-related estimator to misspecified statistical and parametric 

inputs to the estimator. 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Random_vector
http://en.wikipedia.org/wiki/Euclidean_vector
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Scalar_(mathematics)
http://en.wikipedia.org/wiki/Joint_probability_distribution
http://en.wikipedia.org/wiki/Variance


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

95 

 

This research was limited to the error sensitivity analysis for the case of statistical uncertainties in the geopredictive 

malarial-related hyperendemic transmission-oriented risk model. Here the actual noise covariances were denoted by 

and respectively, whereas the design sampled hyperendemic transmission oriented values used in the 

estimator are and respectively. The actual error covariance in the model was denoted by and 

as  computed by the Kalman filter. When and , in our model outputs this meant 

that . While computing the actual error covariance 

using , substituting for and using the fact that 

and , resulted in the following recursive equations for 

 : an  

While computing , by design the filter implicitly assumed that and 

. Note that the recursive expressions for and were identical except for the 

presence of and in place of the design values and respectively in our geopredictive malaria-related 

model. 

ARIMA models used the observable non-stationary processes Xt that had some clearly identifiable trends which 

included a constant trend (i.e. zero average) which was modeled by , a linear trend (i.e. linear growth behavior) 

which was then modeled by  and a quadratic trend. Thereafter, this quadratic growth behavior was modeled by 

. In this research the ARIMA model was viewed as a "cascade" of two models. The first was non-stationary: 

 while the second was wide-sense stationary:  Finally, forecasts 

techniques were formulated for the process , and then having the sufficient number of initial conditions)  was 

forecasted via opportune integration steps. 

Thereafter, a random effects term was specified with the sampled monthly time series data. This random effects 

specification revealed a non-constant mean across the sampled districts that were variable that represented a district-

constant across time. This specification also represented a district-specific intercept term that was a random 

deviation from the overall intercept term as it was based on a draw from a normal frequency distribution. In this 

research, this random intercept represented the combined effect of all omitted district-specific predictor covariate 

coefficients that caused some districts to be more prone to the malaria prevalence than other districts. Inclusion of a 

random intercept assumed random heterogeneity in the districts‘ propensity or underlying risk of malaria prevalence 

that persisted throughout the entire duration of the time sequence under study. The Poisson mean response 

specification was mu = expel [a + re+ LN (population)], Y ~Poisson (mu). The mixed-model estimation results 

included a = -3.1876, re ~ n (0, s
2
), mean re = -0.0010 s

2
 = 0.2513, P(S-W) = 0.0005 and Pseudo-R

2
 = 0.3103 for 

prevalence regressed on geopredicted prevalence. This random effects term displayed no spatial autocorrelation, and 

failed to closely conform to a bell-shaped curve. Its variance implied a substantial variability in the prevalence of 

malaria across districts. We noticed that he estimated model contained considerable over dispersion (i.e., excess 

Poisson variability): quasi-likelihood scale = 76.5648.  

Figure 2 portrays scatterplots of observed versus predicted prevalence for selected months, and reflects the 

considerable amount of noise in the malarial prevalence data as well as the random effects term accounting for about 

a third of the variance in the space-time series of malarial prevalence. As with most statistical procedures, the 

random effects term in our model corresponded more closely with the data in the center of the time series. This 

goodness-of-fit feature implied that although the random effects term can be used for purposes for predicting 
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malarial at the district level in Uganda but it was less effective for quantitating data associated to a relatively lengthy 

time series. 

Based on the spatiotemporal-sampled district level predictor covariate coefficients a random effects model was 

generated. The articulated tessellations for Uganda based upon district geocodes was then digitally overlaid onto 

interpolated data in ArcGIS
®
 using species distribution (e.g.,  Anopheles gambiae s.l. ) and Entomological 

Inoculation Rate (EIR), and remote sensing band data from the Malaria Atlas Project (http://www.map.ox.ac.uk). 

The MAP team has assembled a unique spatial database on linked information based on medical intelligence, 

satellite-derived climate data to constrain the limits of malaria transmission and the largest ever archive of 

community-based estimates of parasite prevalence (Hay and Snow 2006). The initial focus of MAP has been 

centered on predicting the endemicity of Plasmodium falciparum, the most deadly form of the malaria parasite, due 

to its global epidemiological significance and its better prospects for elimination and control but this database has 

been since improved (http://www.map.ox.ac.uk).We overlaid the spatial tessellations generated from the 

geopredictive district-level map onto MAP data. 

Figure 5: A predicted spatial distribution of Plasmodium falciparum EIR map  

in 2012 for Uganda 

 

http://www.map.ox.ac.uk/
http://en.wikipedia.org/wiki/Plasmodium_falciparum
http://www.map.ox.ac.uk).we/
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Figure 6: The spatially predicted distribution of Anopheles gambiae s.l. throughout the Ugandan study site 
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Figure 7: District-level risk map of Anopheles arabiensis for the Ugandan study site 
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Figure 8: District-level band 1 malarial radiance risk map for the Ugandan study site 
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Figure 9: District-level band 2 malarial radiance risk map for the Ugandan study site 
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Figure 10: District-level band 3 malarial radiance risk map for the Ugandan study site 
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We then generated a Land Use Land Cover (LULC) model in ArcGIS
®
. The model was then draped with the 

district-level tessellations images. Traditional per-pixel spectral-based supervised LULC malaria-related 

classification require incorporation of textural images and multispectral images, spectral-spatial classifier, and 

segmentation-based data for developing control strategies in urban landscapes at the cluster -level (Jacob et al. 

2003).  In this research we employed the spatial information of the district level data as an ArcGIS segmentation-

based classification method which significantly improved land cover classification performance especially for 

quantifying hydrological-related covariate coefficients at the district level. 

Figure 11:  A land use land cover model for the Ugandan study site 

 

 Next, to improve our random effects model we used Digital Elevation Model (DEM) stratification and then added 

the terrain-related statistic derived to improve our original random effects model. Flood and swamp water mosquito 

abundance can be predicted in real time using high resolution data through application of a dynamic hydrological 

model (Jacob et al. 2008a). These models can account for topographic variability and their control over soil moisture 

heterogeneity and runoff within a shed. Soil moisture levels can also be associated with local malaria mosquito 

biting rates on humans and entomologic inoculation rates (EIR) (Pats 1998). The probability distribution of the soil 

moisture deficit, i.e., statistics of topography was generated from the DEM data by using a multidirectional flow 

routing algorithm, which in this research was tied to an adaptive error correction (pit infill) scheme needed for low-

relief areas in Uganda. In Jacob et al. (2008a) a robust DEM was employed to yield several catchment hydrological 
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variables including percent surface saturation, and total surface runoff for identification of urban malaria mosquito 

An. gambiae s.l. mosquitoes sampled in Gulu, Uganda. 

A Stream Raster Grid was then generated in ArcGIS
®
. Euclidian distance-to-nearest hydrological body was then 

calculated as the distance from a grid cell to a stream grid cell defined by a Stream Raster Grid. Flow distance-to-

stream  was employed to quantitate availability of the aquatic larval habitats and these were calculated as the 

distance from a grid cell moving downstream to a stream grid cell defined by the Stream Raster grid. The Terrain 

Analysis Using DEM (i.e., TauDEM) in ArcGIS
®
 was then used to retrieve terrain-related geomorphological 

uncertainty parameter estimators. A three-dimensional model of the Ugandan study area was also constructed based 

on the DEM using Arc Scene extension of ArcGIS
®
. The range of the elevation in the DEM had a minimum value of 

996 m with a maximum value of 1,132 m. The slope of the An. gambiae s.l. aquatic larval habitats was 0.171%. The 

model revealed that for aquatic larval habitat count sampled at the Ugandan  study site employing the sampled 

parameter estimator slope there was a negative correlation (-0.23) for a local district –level  model  (e.g.,  Abim)  

based on distance to stream. A DEM of the study area was downloaded from seamless United States Geological 

Survey (USGS, March 17
th

, 2013). In this research, the DEM was constructed based on a contour map of 1:50,000. 

We then overlaid the district-level tessellation in ArcGIS onto the DEM (see Figure 10). 

Figure 12: Digital elevation model for the Ugandan study site  
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We then qualitatively assessed THE geomorphological terrain-related LULC statistics derived from the DEM and 

band radiance estimates to create more robust indices based on our primary model estimates. This model was then 

based on tabulated DEM, LULC parameter estimators ,satellite  band radiance values at the district level , a model 

random effects term, and a regressed predicted district-level prevalence count. The Poisson mean response 

specification was then:  = exp[a + re+ LN(population)] , Y ~Poisson( ) + DEM (zonal statistic). The mixed-model 

estimation results included: a = -3.1876 re ~ n(0, s
2
) mean re = -0.0010 s

2
 = 0.2513 where P(S-W) = 0.0005 and the 

Pseudo-R
2
 = 0.3103. (See Figure 11). 

Figure 13: Prioritized districts based on random effects hierarchical linear-based malaria risk model at the Ugandan 

study site.  

 

In our Ugandian malraial model the GLS estimator is unbiased, consistent, efficient, and asymptotically normal:  

GLS is equivalent to applying  OLS to a linearly transformed version of time series-dependent data (Cressie 1993). 
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To attain factor Ω = BB′, for instance the linear endemic malarial transmission-oriented regression risk-based 

regression model which can be constructured ed  employing the Cholesky decomposition. Cholesky decomposition 

or Cholesky triangle is a decomposition of a Hermitian, positive-definite matrix into the product of a lower 

triangular matrix and its conjugate transpose. Given a symmetric positive definite matrix A , the Cholesky 

decomposition is an upper triangular matrix   with strictly positive diagonal entries such that  Cholesky 

decomposition is commonly  implemented in SAS/GIS as CholeskyDecomposition[m].  In a loose, metaphorical 

sense, decomposition this can be thought of as the matrix analogue of taking the square root of a number. Then if we 

multiply both sides of the equation Y = Xβ + ε by B−1, we get an equivalent linear model Y* = X*β + ε*, where Y* 

= B−1Y, X* = B−1X, and ε* = B−1ε. In this model Var[ε*] = B−1ΩB−1 = I. Thus, we can efficiently estimate β by 

applying OLS to the transformed linear endemic malarial transmission-oriented regression risk-based model 

regression model data, which would then simply require minimizing.By so doing, any effect of standardizing the 

scale of the errors would be  ―de-correlating‖. Since OLS is applied to data with homoscedastic linear endemic 

malarial transmission-oriented regression risk-based model regression model errors, the Gauss–Markov theorem 

applies, and therefore the GLS estimate is the best linear unbiased estimator for β ( see Cressie 1993).In ArcGIS a 

table was generated which identifed and ranked  the predicted cluster (i.e., district) (see Table 2). 

Table 1: Ugandan districts listed by malaria risk priority as is shown on Figure 11 above 

ID Name ID Name ID Name ID Name ID Name ID Name

1 Busia 13 Zombo 33 Alebatong 53 Gomba 73 Ntoroko 93 Kanungu

2 Kitgum 14 Ntungamo 34 Budaka 54 Namutumba 74 Hoima 94 Amuru

3 Pader 15 Bukomansimbi 35 Ngora 55 Rubirizi 75 Namayingo 95 Buliisa

4 Kalangala 16 Bulambuli 36 Moroto 56 Bukedea 76 Jinja 96 Amolatar

5 Kotido 17 Gulu 37 Kyegegwa 57 Bukwa 77 Adjumani 97 Kamwenge

6 Abim 18 Buikwe 38 Buhweju 58 Rukungiri 78 Kibaale 98 Soroti

7 Isingiro 19 Otuke 39 Rakai 59 Buyende 79 Kasese 99 Kayunga

8 Masaka 20 Mityana 40 Luuka 60 Dokolo 80 Kibuku 100 Lira

9 Nakasongola 21 Mubende 41 Kisoro 61 Bundibugyo 81 Arua 101 Kyenjojo

10 Kapchorwa 22 Kole 42 Mitooma 62 Iganga 82 Kabale 102 Ssembabule

11 Maracha 23 Ibanda 43 Tororo 63 Napak 83 Mbale 103 Kamuli

12 Masindi 24 Nyoya 44 Amuria 64 Serere 84 Kiryandongo 104 Wakiso

25 Agago 45 Kween 65 Sironko 85 Amudat 105 Manafwa

26 Mbarara 46 Kumi 66 Sheema 86 Bugiri 106 Apac

27 Butaleja 47 Lwengo 67 Nebbi 87 Kabarole 107 Lamwo

28 Lyantonde 48 Mpigi 68 Kyankwanzi 88 Mayuge 108 Luwero

29 Butambala 49 Mukono 69 Moyo 89 Bushenyi 109 Yumbe

30 Kaliro 50 Buvuma 70 Bududa 90 Katakwi 110 Oyam

31 Kaabong 51 Kaberamaido 71 Kiboga 91 Koboko 111 Kampala

32 Kiruhura 52 Pallisa 72 Nakaseke 92 Kalungu 112 Nakapiripirit  

Discussion  

Initially, a geopredictive LULC analyses was conducted employing the time series district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented covariate coefficients from the empirical sampled 

dataset. An unsupervised classification algorithm in ArcGIS  for the Ugandan LULC district-level malarial risk map 

subdivided the sampled data attributes  into two phases: (i) the ―calibration‖ phase in which the algorithm identified 

a classification scheme based on signatures of different bands obtained from known ―training‖ sites having known 

class labels (e.g., land cover , crop types), and (ii) the prediction phase, in which the classification scheme was 
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applied to other geolocations with unknown class membership. The algorithms  revealed relationships, ( e.g., 

―rules‖, ―networks‖, and ―likelihood‖ measures, between the input [e.g., district-level remote sampled malaria-

related spectral reflectance objects  at different visible and NIR bands in geopredictor space) and the output (i.e., the 

district-level   LULC class label) so that either an appropriate discriminant function  was maximized  and a cost 

function accounting for misclassified observations was minimized. In other words, our seasonal LULC predictive 

malaria-related hyperendemic transmission oriented risk model  followed the traditional modeling paradigm that 

attempted to find an ‖optimal‖  unbiased residual forecasted estimator employing the distance between the observed 

hyperendemic transmission oriented featured  attributes and the classification response. Our model revealed land 

cover classes at each district sampled at the Ugandan epidemiological study site. 

 

A different LULC approach may be proposed in the future for quantitating parcels of within the context of district-

level land cover topographic classification for generating a robust geopredictive malaria-related risk model at a 

meso-scale using the modified nearest-neighbor (MNN) technique. The MNN algorithm is a hybrid algorithm in 

ArcGIS that combines algorithmic features of a dimensionality reduction algorithm. This algorithm can survey 

existing feature selection for district-level malaria-related  hyperendemic transmission oriented classification and 

clustering of  district-level sampled  groups and then  compare the group  employing  a categorizing framework 

based on search strategies, evaluation criteria, and data mining tasks. By so doing, the residual algorithmic outputs 

can reveal unattempted district-level hyperendemic transmission oriented combinations and provide guidelines in 

selection of other district-level malarial featured spatial/spectral objects.  

 

Within a categorizing MNN framework, efforts toward building an integrated system for intelligent feature selection 

can also be developed in ArcGIS. A unifying platform may be proposed for instance. Given a set D of objects and a 

query object q, an MNN query returns from D, the set of objects that are among the k1 (P1) nearest neighbors (NNs) 

of q (see Jensen 2005). As such, many illustrative examples of individual  district-level malaria-related predictive 

time series feature selection may be  then presented to show how existing LULC topographic  time series trend 

analyses  data may be integrated into a meta algorithm. An added advantage of doing so is to help a 

malariaologist/experimenter employ a suitable algorithm without knowing specific details of each algorithm (e.g., 

methodology of latent uncertainty filed/clinical/remote hyperendemic transmission oriented forecast quantitation). 

Some seasonal district-level predictive malaria-related risk mapping applications may be then included to 

demonstrate the use of a feature selection in data mining. Further, the MNN derived predictive malarial-related  

district-level model could provide  (i) an extremely flexible and parsimonious environment for  a few georeferenced  

residual forecasted estimators (e.g., k the number of NNs ) to be qualitatively/quantitatively assessed, (ii) an  

extremely attractive field map validatior  attained   without  requiring preprocessing of the forecasted data nor, 

assumptions with respect to the distribution of the training data; and, (iii) robust regressed forecasts r as the single 1-

NN rule would guarantee an asymptotic error rate at the most twice that of the Bayes probability of error.  

For instance, suppose an unknown geoparameter district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented observational estimator  θ is known to have a prior distribution  in seasonal 

geopredictive malarial risk model where    is an estimator of θ (based on some  regressed district-level 

field/clinical/remote sampled explanatory covariate coefficients measurement values x), and l. In such a model  

 would be a loss function, such as squared error. The Bayes risk in the district-level model would then be 

of   and as such defined as , where the expectation would be taken over by the probability 

distribution of  in the sampled data attributes. This SAS/GIS derived model would thereafter be able to define the 

risk function in the model as a function of . An estimator is said to be a Bayes estimator if it minimizes the Bayes 

risk among all estimators (Gilks 1996). Equivalently, the estimator which minimizes the posterior expected loss 

[i.e., ] in the predictive district-level malaria-related regression-based risk model would then 

minimize the Bayes risk for each x in the residually forecasted regression-based estimates. 

Importantly, if the prior is improper in a time series district –level predictive malaria-related risk model, then the 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented exploratory observational 

estimators which minimize the posterior would be the expected loss for each x in the generalized Bayes forecasted 

error estimates. The most common risk function used for Bayesian probabilistic estimation is the MSE, also called 

http://en.wikipedia.org/wiki/Prior_distribution
http://en.wikipedia.org/wiki/Loss_function
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Improper_prior
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squared error risk (Cressie 1993). The MSE is defined  by where the 

expectation is taken over the joint distribution of and  (Rao 1973). Thus, employing the MSE as risk, the Bayes 

estimate of the unknown geoparameter in a time series district-level SAS/GIS derived predictive malarial-related 

regression-based risk model would then be  simply the mean of the posterior distribution, 

. This then would be expressed as a MMSE estimator.  

In a SAS/GIS derived malaria-related district-level geopredictive time series risk model, a minimum mean square 

error (MMSE) estimator would be an estimation method which minimizes the MSE of the fitted empirical sampled 

dataset of field/clinical /remote sampled hyperendemic transmission measurement values  of a dependent variable( 

e.g., district-level prevalence rate). The basic definition of a district-level predictive time series malarial-related 

MMSE   can be then expressed  in SAS/GIS, if a malarialogist/experimenter lets  be a  unknown (hidden) 

random vector variable, and thereafter  lets be a known random vector variable (i.e., the measurement or 

district-sampled observation). These variables would not have to be of necessarily of the same dimension. As such, 

an estimator of  in  a time series district-level geopredictive malaria-related regression-based risk model 

would be any function of the sampled field/clinical /remote hyperendemic trasnmission explanatory covariate 

coefficient measurement( ). The estimation error vector would then be subsequently given by  and 

its MSE would be given by the trace of error covariance matrix[i.e., ] where the expectation would be taken over 

both and . When is a scalar variable then MSE expression simplifies to (Rao 1973).  

Note that MSE in SAS/GIS  can equivalently be defined in other ways, when constructing a district-level time series 

geopredictive malaria-related regression-based risk model 

since For instance, the MMSE estimator could be 

defined  by the field/clinical /remote hyperendemic transmission geopredictor  achieving the most minimal MSE 

coefficient value. Under some weak regularity assumptions, the MMSE estimator in SAS/GIS could also be  

uniquely defined in a district-level geopredictive malarial risk model residually forecasted estimates 

by (www.sas.com).In such circumstances, the MMSE estimator would be the 

conditional expectation of  in the malaria-related risk model given the known observed values of the sampled 

field/clinical /remote hyperendemic transmission explanatory covariates. The MMSE estimator would then be 

unbiased if   Further, when is a scalar in the district-

level predictive malaria-related regression-based risk model,  the  estimator could be constrained to be of the form 

 which could then be  an optimal estimator, [i.e. ]in the model but  only if 

for all enclosed in  linear subspace when 

.  (see Cressie 1993). Thus, since the MSE for 

estimation of a random vector is the sum of the MSEs of the coordinates (Rao 1973), finding the MMSE estimator 

of a random vector in a SAS/GIS derived  geopredictive time series malarial-related district-level model would 

simply entail finding the MMSE estimators of the coordinates of X separately:[e.g., 

]for all i and j. More succinctly put, in a robust time series SAS/GIS 

derived district-evel predictive malaria-related regression-based risk model  

Also, if and are jointly Gaussian, then the district-level predictive malaria-

related regression-based risk model  MMSE estimator would be linear, (i.e., the field/clinical /remote sampled 

hyperendemic transmission regressors would  fit the form for matrix and constant ) As a 

consequence, to find the optimal hyperendemic transmission residually forecasted  estimator, it would be  sufficient 

http://en.wikipedia.org/wiki/Posterior_distribution
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Trace_(linear_algebra)
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Jointly_Gaussian
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to construct a linear MMSE estimator from an empirical dataset district-level geopredictive malaria-related 

regression-based risk model in SAS/GIS using a dataset  of empirical sampled field/clinical /remote explanatory 

covariate coefficient measurement values.  

The term MMSE more specifically refers to estimation in a Bayesian setting with quadratic cost function (Gilks 

1996). The basic idea behind the Bayesian probabilistic approach for  modeling district-level geopredictive malarial 

–related hyperendemic transmission oriented covariate coefficient estimation in SAS/GIS stems from practical 

situations where some prior information about the field/clinical/remote sampled coefficients needs to be estimated. 

For instance, prior information about the range that a sampled district-level field/clinical/remote sampled malaria-

related hyperendemic transmission oriented parameter estimator may be modified in SAS/GIS when a new field and 

remote sampled observation may be made available in an ecological regressed dataset. This is in contrast to the non-

Bayesian malarial district-levels time series regression-based approach like minimum-variance unbiased estimator 

(MVUE) in other statistical packages (STATA, R) where absolutely nothing is assumed to be known about the 

sampled estimators in advance. In the Bayesian district-level geopredictive time series malarial risk model approach, 

prior information would be captured by the prior probability density function of the sampled geoparameter 

estimators which would then be directly based on the Bayes theorem.  

In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule) is a result that is of high 

importance in the mathematical manipulation of conditional probabilities. It is a result that derives from the more 

basic axioms of probability. In probability theory, the probability P  of some event E, denoted , is usually 

defined in such a way that P satisfies the Kolmogorov axioms (Cressie 1993). This axiom states  that if  a 

malarialogist/experimenter , for instance,  lets  denote anything subject to weighting  in a geopredictive district-

level malaria-related risk model by a normalized linear scheme of weights, the sum to unity in a set  then  would 

be based on the Kolmogorov axioms for every in , which would be simply a sampled field/clinical/remote 

sampled  explanatory hyperendemic  transmission oriented covariate coefficient measurement value  where 

the Kolmogorov coefficient weight of  is such that . In this model scheme  would denote 

the complement of  .  For the mutually exclusive district-level subsets , , ... in , would then be 

expressed a  Qn.  

 

These assumptions can be summarised further for accurate district-level geopredictive time series malaria-related 

risk modeling.For instance, if a malariologist/experimenter lets (Ω, F, P) be a measure space in a district-level 

geopredictive malaria-related risk model with P(Ω)=1, then (Ω, F, P) would be a probability space, with sample 

space Ω, event space F and a probability measure P.Thus  given an ecological empirical dataset of time series 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented  covariate 

coefficients,   a  field/clinical/remote sampling  event  in a sample space   would either be finite with  

coefficient   elements or countably infinite with elements. Thereafter, a malarialogist/experimenter could 

write  and quantitate   if so desired, which then would be the probability of  the 

field/clinical/remote sampling event , being  spatiotemporally defined such that   in the risk model 

forecasted estimes . By so doing,  would be subsequently derived from the time 

series district-level malaria-related model derivatives where and are mutually exclusive. Further, the countable 

additivity in the model estimates could be defined as  for , 2, ...,  I which then 

could also be employed  to generate  the hyperendemic trasnmission oriented covariate coefficient probablity 

distribution where , , .. would be mutually exclusive (i.e., ).  

An alternative approach to formalising probability in a geopredictive malaria-related model may be given by Cox's 

axioms and functional equations. These models are based on the plausibility of a proposition for determining the 

plausibility of the proposition's negation; either by decreasing or  increasing empirical sampled data(e.g., seasonal-

sampled district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented  covariate 

coefficients values). Because "a double negative is an affirmative", this can be performed  for a robust time series 

geopredictive district-level malaria-related risk model by a functional equation   whereby the 
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function f that maps the probability of a proposition to the probability of the proposition's negation is an involution, 

(i.e., it is its own inverse). By so doing, the plausibility of the conjunction [A and B] of two propositions A, B,in the 

malarial-related risk model would depend only on the plausibility of B and that of A given that B is true. From this 

robust residually forecasted field/clinical/remote sampled malarial-related hyperendemic transmission oriented 

covariate coefficients estimates would be derived which would be able to infer whether the conjunctions of 

plausibilities tested in the risk model is associative. Because of the associative nature in propositional logic, this 

becomes a functional equation whereby the function of g in the district-level malarial risk model residual forecasts 

can be described as  which in theory is an associative binary 

operation. All strictly increasing associative binary operations performed on the district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented covariate coefficients  measurement values would 

thereafter be isomorphic to multiplication of other sampled coefficient values in the interval [0, 1].  

For instance, suppose [A and B] is equivalent to [C and D] in a time series SAS/GIS derived district-level 

geopredictive malarial-related hyperendemic transmission oriented risk model. If a malarialogist/experimenter then 

acquires new sampled field /clinical/remote information A and then acquires further new information B, and then  

updates all probabilities each time in the empirical sampled parameter estimator dataset, the updated probabilities 

would  be the same as if the malarialogist/experimenter  first acquired new information C and then acquired further 

new information D. In view of the fact that multiplication of probabilities can be taken to be ordinary multiplication 

of the seasonal sampled district-level time series field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented  covariate coefficients  measurement values, this data then subsequently could be regressed 

using a functional equation  (see Cressie 1993). Further, Cox's theorem 

implies that any plausibility district-level field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented  risk model that meets the postulates would be  equivalent to the subjective probability model, whereby the 

residually forecasted hyperendemic transmission oriented estimates  can be converted to the probability  estimates 

by rescaling. 

There are other implications of Cox‘s postulate for geopredictive time series malaria-related district-level 

hyperendemic transmission oriented risk modeling. For instance, the laws of probability derivable from these 

postulates would be based on  w(A|B) whereby the "plausibility" of the proposition A  (e.g. finding a high density 

count district-level  sampled anopheline aquatic  larval habitat,) given B (e.g.,district-level rainfall event), and m ( 

low humidity) is some positive estimator measurement value . As such, A
C
 would then represent the absolute 

complement of A in the risk model residual forecasts statistically targeting the significant field/clinical/remote 

sampled hyperendemic transmission oriented predictors. Thereafter  the forecasts certainty could be  represented by 

w(A|B) = 1, w
m
(A|B) + w

m
(A

C
|B) = 1 and/or w(A, B|C) = w(A|C) w(B|A, C) = w(B|C) w(A|B, C).  

It is important to note that the Cox postulates can only imply general properties in a robust SAS/GIS derived 

geopredictive time series district-level malarial-related risk model. These are equivalent to the usual laws of 

probability assuming some conventions, namely that the scale of the district-level time series field/clinical/remote 

sampled hyperendemic transmission oriented covariate coefficient measurement values derived from the empirical 

sampled  dataset may be log transformed  from zero to one, and the plausibility function can be conventionally 

denoted P or Pr, which then would be equal to w
m
. By so doing, the malariologist/experimenter would have the 

ability to measure probabilities from one to infinity, with infinity representing certain falsehoods in the malarial risk 

model forecasts. With these conventions, a malarialogist/experimenter could also employ the laws of probability in a 

more familiar form when constructing a robust district-level geopredictive time series malarial-related risk model. 

As such, certain truths may be then accurately represented by Pr(A|B) = 1 in the regressed  empirical dataset of  the 

district-level georferenced field/clinical/remote sampled malaria-related hyperendemic transmission oriented  

covariate coefficients as their certain falsehoods would be  quantitated. For instance, the residual forecasted data 

could be quantitated by PR(A|B) = 0. Pr(A|B) + Pr(A
C
|B) = 1  abds Pr(A, B|C) = Pr(A|C) Pr(B|A, C) = Pr(B|C) Pr(A|B, 

C) . This residual uncertainty equation may also be considered for determining the precise statistical significance of 

specific seasonal-sampled hyperendemic transmission oriented covariate coefficients in the empirical sampled 

dataset.  
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Thereafter, the SAS-GIS constructed geopredictive malarial-related hyperendemic transmission oriented model 

residual forecasts derived from a spatiotemporal regression-based uncertainty matrix would yield, countable 

additivity probability estimates. The measure-theoretic formulation of Kolmogorov assumes that a probability 

measure is countably additive(Cressie 1993). For instance, suppose a malarialogist/experimenter lets be a family 

of probability measures indexed by  in a geopredictive time series district-level malaria-related risk model. 

For notational convenience, he or she may then  assume , so that is one of the probability measures in the 

empirical sampled dataset. Then  would be the likelihood function, where the -algebra 

 would be able to describe the possible district-level field/clinical/remote sampled malaria-related explanatory 

hyperendemic transmission oriented observations and  would then denote expectation with respect to the measure 

. 

In such circumstances a malarialogist/experimenter could also consider the special case where the probability 

measure is described by a pdf [e.g. ] in the SAS/GIS derived  geopredictive time series 

field/clinical/remote sampled malaria-related data. Here,  would be a district-level hyperendemic transmission 

oriented covariate coefficient  real-valued random variable observed,  would be  a real-valued unobserved random 

variable, and  would index the family of joint pdfs. The likelihood function when there is a ―hidden variable‖ is 

usually defined as where is the marginalised pdf obtained by integrating out the unknown 

variable , that is,  (see Griffith 2003). As such, the malarialogist/experimenter 

would qunatiate the variables and their forecast uncertainity if the likelihood function equals when is the -

algebra in each regressed district-level field/clinical/remote sampled explanatory hyperendemic transmission 

oriented random variable . By so doing, the correspondence between the sampled district-level malarial measure 

and the pdf would be for any measurable empirical dataset when  which 

would in actuality be the probability that lies in . In this case, the Radon-Nikodym derivative  would  

simply  be the ratio .  

In mathematics, the Radon–Nikodym theorem is a result in measure theory which states that, given a measurable 

space (X,Σ), a ζ-finite measure on (X,Σ) is absolutely continuous with respect to a ζ-finite measure on (X,Σ). If 

such are the circumstances  in a SAS/GIS derived  geopredictive district-level malaria-related model, then there 

would be  a measurable function f on X .Thus, taking district-level field/clinical/remote sampled explanatory 

hyperendemic transmission oriented random variable values in [0,∞), such that  any 

measurable set A may be achieved. Further, the function f satisfying the above equality would be uniquely defined 

up to a μ-null set. That is, if g in the predictive time series district-level malaria-related risk model is another 

function which satisfies the same property, then f = g μ- would help resolve any latent uncertainty forecasted 

estimates. f is commonly written dν/dμ and is called the Radon–Nikodym derivative(Cressie 1993). The choice of 

notation and the name of the function in the geopredictive risk model would then reflect the fact that the function in 

the residual forecasts is analogous to a derivative in calculus in the sense that it would describe the rate of change of 

density of one measure with respect to another measure in the model. This would be analogous to the way the 

Jacobian determinant is used in multivariable integration ( see Griffith 2003).  

A similar theorem can be proven for signed and complex measures: namely, that if μ is a nonnegative ζ-finite 

measure in a robust predictive time series malaria-related district-level risk model, and ν is a finite-valued signed or 

complex measure such that , (i.e. ν is absolutely continuous with respect to μ), then there would be a μ-

integrable real- or complex-valued field/clinical/remote sampled hyperendemic transmission oriented-related 
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function g on X such that for every measurable set A,  This theorem would be very important 

in extending the ideas of probability theory from probability masses and probability densities defined over the   time 

series empirical dataset of field/clinical/remote hyperendemic transmission oriented-related sampled explanatory 

covariate coefficient measurement values to probability measures defined over arbitrary sets. By so doing, a 

malarialogist/experimenter would be able to determine if and how it is possible to change from one sampled 

probability measure to another. Specifically, the malarialogist/experimenter would determine if the pdf of a 

field/clinical/remote sampled hyperendemic transmission oriented-related function random variable is the Radon–

Nikodym derivative of the induced measure with respect to some base measure (e.g., the Lebesgue measure for 

continuous random variables). The derivative may then be employed to prove the existence of conditional 

expectation in time series malarial risk model function probability measures. The latter itself is a key concept in 

probability theory, as conditional probability is just a special case of it. Amongst other fields, financial mathematics 

uses this theorem extensively for converting actual probabilities into those of the risk neutral probabilities. Such 

changes of probability measure may be the cornerstone of rational interpolation of regressed district-level time series  

autoregressive predictive malarial-related empirical field/clinical/remote sampled data.   

Further, suppose a malarialogist/experimenter lets ν, μ, and λ be ζ-finite measures on the same measure 

space in a geopredictive SAS/GIS derived district-level time series malaria-related risk model. If ν ≪ λ and μ ≪ λ 

where ν and μ are absolutely continuous in respect to λ in the model‘s forecasts , then 

. If ν ≪ μ ≪ λ, then .In particular, if μ ≪ ν and ν ≪ μ, 

then .If μ ≪ λ and g is a μ-integrable function, then in the 

risk model resdiual forecasts.If ν is a finite signed or complex measure, then but  only if μ and ν are 

measures over X, and μ ≪ ν  (see Griffith 2003).The Kullback–Leibler divergence would  then need to determined 

from μ to ν  employing  

In probability theory and information theory, the Kullback–Leibler divergence (also information divergence, 

information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two probability 

distributions P and Q. Specifically, the Kullback–Leibler divergence of Q from P, denoted DKL(P||Q), is a measure 

of the information lost when Q is used to approximate P(see Griffith 2003). KL measures the expected number of 

extra bits required to code samples from P when using a code based on Q in a malarial geopredictive risk  model 

rather than using a code based on P (see Jacob et al. 2009d). Typically P would represent the "true" distribution 

(e.g., district-level field/clinical/remote sampled explanatory hyperendemic transmission oriented observations), or a 

precisely calculated theoretical distribution of the paramter estimators. The measure Q typically would then 

represent a model, description, or approximation of P. For discrete probability distributions P and Q, the K–L 

divergence of Q from P in a district-level time series geopredictive malarial-risk model could then be defined by 

In other words, the risk model residual forecasts targeting the 

statistically important estimators (e.g.  field/clinical/remote hyperendemic transmission oriented covariates) would 

be based on the expectation of the logarithmic difference between the probabilities P and Q in a robust predictive 

time series where the expectation would be quantitated employing the probabilities of P. The K–L divergence is 

only defined if, P and Q both sum to 1 and if, implies for all i (i.e., absolute 
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continuity)(see Cressie 1993). Further, if the quantity  appears in the a district-level malarial-related risk-

based geopredictive equation it could then be interpreted as zero because . 

For distributions P and Q of a continuous district-level time series field/clinical/remote sampled 

explanatory hyperendemic transmission oriented  real-valued random v variable, KL-divergence could also be  

defined to be the integral as in SAS/GIS where p and q denote 

the densities of P and Q. More generally, if P and Q are probability measures over a set X, and P is absolutely 

continuous with respect to Q, then the Kullback–Leibler divergence from P to Q in a robust predictive seasonal 

district-level malaria-related risk model could be defined in SAS/GIS 

as where is the Radon–Nikodym derivative of P with respect to 

Q, provided the expression on the right-hand side exists. Equivalently, this can be written 

as which may be  recognized as the entropy of P relative to Q. 

Continuing in this case, if is any  field/clinical/remote sampled hyperendemic transmission oriented covariate 

coefficient measure on X  in the risk model for which and exist, then the Kullback–Leibler 

divergence from P to Q would be  given as  The logarithms in these formulae 

would be then taken to base 2 if  the district-level malaria-risk based information is measured in units of bits, or to 

base e if the information is measured in nats. Most formulas involving the KL divergence for robust  time series 

geopredictive district-level malarial risk modeling holds irrespective of log base (see Jacob et al. 2009d). 

Further, various conventions exist for referring to DKL(P||Q) in a robust geopredictive district-level malarial-related  

risk model in SAS/GIS. Often in such modeling this variable describes the divergence between P and Q; however in 

some cirucmstances it fails to convey the fundamental asymmetry in the relation. Sometimes the variables may be 

described as the divergence of P from, or with respect to Q often in the context of relative entropy, or information 

gain. However, for robust geopredictive time series malarial-related risk modeling, the divergence of Q from P 

would be the optimal language used, as this would best describe the idea that P is considered the underlying "true" 

or "best guess" distribution where expectations are calculated while Q is some divergent approximate distribution. 

Although it is often intuited as a metric or distance, the KL divergence is not a true metric — for instance, it is not 

symmetric: the KL from P to Q is generally not the same as the KL from Q to P (Griffith 2003). However, in a 

geopredictive malarial time series district-level model this would be in infinitesimal form, specifically its Hessian, 

would be a metric tensor (i.e. the Fisher information metric). 

In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a function 

(Cressie 1993). The matrix describes the local curvature of a function of many variables. Thus given  a dataset of 

field/clinical/remote hyperendemic transmission real-valued function if all second partial 

derivatives of f exist and are continuous over the domain of the function in a   robust georpedictive district-level 

malaria-related risk model, then the Hessian matrix of f  in SAS/GIS would be 

where x = (x1, x2, ..., xn) and Di is the differentiation operator with respect to the 

ith argument which would then be delineated as   
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Because f is often clear from context, in Hessian matrices is frequently abbreviated to 

(see Griffith 2003). Hessian matrices are used in large-scale optimization problems within Newton-type 

methods because they are the coefficient of the quadratic term of a local Taylor expansion of a function. That is, 

where J is the Jacobian matrix, 

which is a vector (i.e.,the gradient) for scalar-valued functions. The full Hessian matrix can be difficult to compute 

in practice; in such situations, quasi-Newton algorithms have been developed that use approximations to the 

Hessian. The best-known quasi-Newton algorithm is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 

which is an iterative method for solving unconstrained nonlinear optimization problems (Cressie 1993). The Hessian 

matrix is related to the Jacobian matrix by =  in a robust geopredictive malarial-related 

risk model ( see, Jacob et al. 2011c Jacob et al. 2009d). 

 In SAS/GIS-related information geometry, the Fisher information metric is a particular Riemannian metric which 

can be defined on a smooth statistical manifold, (i.e., a smooth manifold whose points are probability measures 

defined on a common probability space)(www.sas.com). Additionally, Fisher informatic metric can be used to 

tabulate the informational difference between district-level geopredictive malaria-related time series 

field/clinical/remote sampled hyperendemic transmission oriented measurements.( total anopheline aquatic larval 

habitat density counts)in SAS/GIS( see Jacob et al. 2008b.c) The metric is interesting in several respects. First, it can 

be understood to be the infinitesimal form of the relative entropy (i.e., the Kullback–Leibler divergence); 

specifically, it is the Hessian of the divergence. Alternately, it can be understood as the metric induced by the flat 

space Euclidean metric, after appropriate changes of a variable(e.g., district-level field/clinical/remote sampled 

explanatory hyperendemic transmission oriented covariate ).  

Interestingly, when extended to complex projective Hilbert space, the Fisher information metric  becomes the 

Fubini–Study metric; when written in terms of mixed states, it is the quantum Bures metric (Griffith 2003). 

Considered purely as a matrix, the metric  is known as the Fisher information matrix. Considered as a measurement 

technique, where it is used to estimate hidden geoparameters in terms of observed random variables, the metric is 

known as the observed information (Cressie 1993) Further, for the Rényi divergence of order α 

from μ to ν the metric could be defined by employing By 

so doing the assumption of ζ-finiteness in the Radon–Nikodym theorem would makes he assumption that a 

field/clinical/remote sampled geopredictive malaria-related hyperendemic transmission oriented explanatory 

covariate coefficient measure μ with respect to the rate of change of ν is sigma-finite in the risk model .In 

mathematics , a positive (or signed) measure μ defined on a ζ-algebra Σ of subsets of a set X is called finite if μ(X) is 

a finite real number ( field/clinical/remote sampled malaria-related hyperendemic transmission oriented explanatory 

covariate coefficient)rather than ∞(Hosmer and Lemeshew 2000)  The measure μ is called ζ-finite if X is the 
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countable union of measurable sets with finite measure. A set in a measure space is said to have ζ-finite measure if 

it is a countable union of sets with finite measure(Cressie 1993). 

Unfortunately, there may be examples in SAS/GIS and other statistical packages where μ is not sigma-finite and the 

Radon–Nikodym theorem fails to hold in a model formulation. For instance, suppose a malarialogist/experimenter 

employs the Borel sigma-algebra on the real line for  risk modeling a residual forecasted distribution of regressed 

field/clinical/remote empirical sampled hyperendemic trasnmission oriented covariate coefficients in SAS/GIS. In 

mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from 

closed sets) through the operations of countable union, countable intersection, and relative complement. For a 

topological space X in a geopredictive malarial-related time series risk model then the collection of all Borel sets on 

X would form a ζ-algebra term generated from the  spatiotemporally quantitated sampled field/clinical/remote 

sampled estimators. Therefater , if a malarialogist/experimenter lets the district-level malaria-related risk counting 

measure, μ, of a Borel set A is defined as the number of elements of A ,when A is finite, and +∞ otherwise ,the 

information metric will check whether  μ is indeed a valid district-level measure in the model residual  derivatives. 

This measure would not be is not sigma-finite, as not every Borel set is at most a countable union of finite sets (see 

Cressie 1993). Thereafter, if a malarialogist/experimenter lets ν be the usual Lebesgue measure on the quantitated 

Borel algebraic data  then, ν would be  absolutely continuous with respect to μ, since for a set A there would be 

μ(A) = 0 , but only if A is the empty set. By so doing, ν(A) would be  zero in the forecasts targeting the statistically 

significant district-level field/clinical/remote sampled hyperendemic transmission oriented covariates. Assuming 

that the Radon–Nikodym theorem holds, that is, for some measurable district-level field/clinical/remote sampled 

hyperendemic transmission oriented covariates function, then f could be defined employing 

for all Borel sets. Taking A to be a singleton set, A = {a}, and using the above equality, a 

malarialogist/experimenter would then find for all the geosampled hyperendemic transmission oriented 

covariates coefficient measurement values a. This would imply that the function f in the district-level geopredictive 

malaria-related time series risk model residual forecasts based on the Lebesgue measure ν, is zero. 

For finite district-level time series geopredictive malaria-related risk model forecasts measures μ and ν, the idea of 

residually quantitating functions f with f dμ ≤ dν  in SAS/GIS may be interesting. The supremum of all such 

functions, along with the monotone convergence theorem, then would furnish the Radon–Nikodym derivative in the 

risk model. The fact that the remaining part of μ is singular with respect to ν would then follow from the geosampled 

field/clinical/remote sampled explanatory hyperendemic transmission oriented covariate coefficient finite measures. 

Once the result is established for these finite measures, extending to ζ-finite, signed, and complex measures can be 

done naturally. For instance, suppose that μ and ν are both finite-valued nonnegative measures in an empirical 

sampled dataset of district-level geopredictive field/clinical/remote explanatory hyperendemic transmission oriented 

covariate coefficients. If a malarialogist/experimenter lets F then be the set of those measurable functions 

f : X → [0, +∞) satisfying for every A ∈ Σ ,F then would  not be empty in the risk model 

derivatives  for it would contain at least the zero function. Thus, if a malarialogist/experimenter lets f1, f2 ∈ F , A be 

an arbitrary measurable set, A1 = {x ∈ A | f1(x) > f2(x)}, and A2 = {x ∈ A | f2(x) ≥ f1(x) then  

 and therefore, max{f1, f2} ∈ F.Now,if the 

malarialogist/experimenter  lets {fn} be a sequence of functions in F such 

that ,then replacing fn with the maximum of the first n functions in the risk 

model, would quantitate  any sequence {fn}.  Thereafter, by letting g be a function  in the malarial risk model 

residual forecasts defined as the  Lebesgue's monotone convergence theorem would 

hold  when s for each A ∈ Σ, and hence, g ∈ F. 
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In the mathematical field of real analysis, the monotone convergence theorem refers to a number of related theorems 

proving the convergence of monotonic sequences (sequences that are increasing or decreasing) that are also bounded 

(Schechter (997).. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, 

then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded 

below by an infimum, it will converge to the infimum.  Thus if is a monotone sequence of 

field/clinical/remote district-level geopredictive malarial-related explanatory hyperendemic transmission oriented 

covariate coefficients (i.e., if an ≤ an+1 or an ≥ an+1 for every n ≥ 1), then this sequence will have a finite limit if and 

only if the sequence is bounded. This can be easily proven in a robust district-level geopredictive malarial-related 

model  by proving  that if an increasing sequence is bounded above in the model then it is convergent and the 

limit is .Since is non-empty and by assumption, it is bounded above, then, by the Least upper 

bound property of the time series  of field/clinical/remote district-level predictive malarial-related explanatory 

hyperendemic transmission oriented covariate coefficient measurements, exists and is finite. Now 

for every , there exists such that , since otherwise is an upper bound of , 

which contradicts to being . Then since is increasing, 

, hence by definition, the limit of is 

in the resdiual forecasts.This may be also revealed in the model forecasts in SAS/GIS  , by the 

construction of g, Now, since g ∈ F, defines a 

nonnegative measure on Σ(Cressie 1993) and supposing ν0 ≠ 0; then  μ would be finite if  ε > 0 such that 

ν0(X) > ε μ(X) in the geopredictive district-level time series malarial model derivatives.   

Further by letting (P, N) in SAS/GIS be a Hahn decomposition for the signed measure ν0 − ε μ. every A ∈ Σ 

will be expressed as ν0(A ∩ P) ≥ ε μ(A ∩ P), and 

hence, and  in the 

geopredictive time series district-level time series malarial model. In mathematics, the Hahn decomposition 

theorem, , states that given a measurable space (X,Σ) and a signed measure μ defined on the ζ-algebra Σ, there exist 

two measurable sets P and N in Σ such that: 1) P ∪ N = X and P ∩ N = ∅,  and for each E in Σ such that E ⊆ P one 

has μ(E) ≥ 0; that is, P is a positive set for μ and for or each E in Σ such that E ⊆ N one has μ(E) ≤ 0; that is, N is a 

negative set for μ.  

Moreover, this decomposition is essentially unique, in the sense that for any other pair (P', N') of measurable sets in 

SAS /GIS for fulfilling multiple conditions in residual forecasts targeting statistically important robust district-level 

geopredictive malarial-related risk model derivarives. By so doing, the symmetric differences P Δ P' and N Δ N' 

would be  μ-null sets in the sense that every measurable  subset of  the explanatory  regressed empirical geosampled 

field/clinical/remote field/clinical/remote hyperendemic transmission oriented covariate coefficients would have 

zero measure. The pair (P,N) would then be  effectively quantitated as  Hahn decomposition of the signed measure. 

Also, note that μ(P) > 0 would be apparent  in the  district-level malarial risk model forecasts for if μ(P) = 0 then ν 

would be  absolutely continuous in relation to μ where ν0(P) ≤ ν(P) = 0, so ν0(P) = 0 

and  thus contradicting the fact that ν0(X) > ε μ(X).Then, 

g + ε 1P ∈ F in the SAS/GIS derived model residual forecasts would 

satisfy  
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However, robust residual quantitation of explanatory regressed georefernced field/clinical/remote sampled district-

level hyperendemic transmission oriented covariate coefficients could be mispsecified in SAS if during the model 

construction stage the initial assumption ν0 ≠ 0 is false. Then, since g would be  μ-integrable, and the set {x ∈ X | 

g(x) = +∞} would be μ-null in the forecasted estimates. Therefore, if  f is defined  in a time series predictive district-

level malaria-related SAS/GIS derived risk  model as and f has the desired 

properties, the residual uniqueness of the model can be determined if a malarialogist/experimenter  lets f, g : 

X → [0, +∞) be measurable functions satisfying for every measurable set 

A.By so doing, g − f and would be  μ-integrable in the optimal residual forecasts In 

particular, for A = {x∈X | f(x) > g(x)}, or {x ∈ X | f(x) < g(x)}. It follows then 

that and so, that (g−f)
+
 = 0 μ-would be reflected in the 

forecasts; the same is true for (g − f)
−
, and thus, f = g μ for targeting the statistically important field/clinical/remote 

sampled explanatory hyperendemic transmission oriented covariate coefficients. 

For ζ-finite positive measure edit in a geopredictive district-level SAS/GIS derived malaria-related time 

series model, if μ and ν are ζ-finite, then X can be written as the union of a sequence {Bn}n of disjoint sets in Σ, each 

of which has finite measure under both μ and ν. For each n, there is a Σ-measurable function fn : Bn → [0, +∞) such 

that  for each Σ-measurable subset A of Bn. (Griffith 2003).The union f of these functions 

would then be then the required function for proper regeression of the  sampled field/remote/clinical explanatory 

hyperendemic transmission oriented covariate coefficients. As for the uniqueness in the residually targeted forecasts, 

since each of the fn would be μ-almost everywhere in the derivatives, then so would be  f. If ν is a ζ-finite signed 

predictive district-level malarial-related measure, then it can be Hahn–Jordan decomposed as ν = ν
+
−ν

−
 where one of 

the measures is finite. Applying the previous result to these two measures, an malarialogist/experimenter would 

obtain two functions, g, h : X → [0, +∞), satisfying the Radon–Nikodym theorem for ν
+
 and ν

−
 respectively in 

SAS/GIS when constructing the district-level geopredictive model. Further, at least one of the measures would be μ-

integrable (i.e., its integral with respect to μ is finite). It is clear then that f = g − h satisfies the required properties in 

a robust geopredictive district-level malaria-related risk model, including uniqueness, then both g and h  in the 

residual forecasts would also be unique. If ν is a complex measure in the targeted field/clinical/remote sampled 

hyperendemic transmission oriented covariate coefficients, they can be decomposed as ν = ν1 + iν2, where both ν1 

and ν2 are finite-valued signed measures. Applying the above argument, in SAS/GIS, a malarialogist/experimenter 

would obtain two functions, g, h : X → [0, +∞), satisfying the required properties for ν1 and ν2, respectively in the 

residual forecasts. Clearly, f = g + i h  is a required function in a robust SAS/GIS derived geopredictive time series 

district-level malaria-related risk model. 

The conditional expectation with respect to  in the Radon-Nikodym derivative in SAS/GIS would then be under 

the distribution  in the predictive malarial-related time series district-level model which would then 

verify that is indeed the likelihood function in the model residual forecasts. This verification  does not make 

any less mysterious. Instead, it can be understood directly as follows. From the definition 

of conditional expectation, it is straightforward to verify that  in a SAS/GIS constructed district-

level time series geopredictive malarial risk model employing any -measurable set of field/clinical/remote 

sampled explanatory hyperendemic transmission oriented covariate coefficients ,  
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would possess a likelihood function whereby the ―probability‖ of the observed dataset  contain  the  actual 

observations and thus  would vary with . This would work if but otherwise it would be 

necessary for the malarialogist/experimenter to determine at how varies when is an arbitrarily small but 

non-negligible set centered on a true geosampled district-level field/clinical/remote hyperendemic transmission 

oriented observation. It may be impossible to make a perfect observation correct to infinitely many significant 

figures; in the risk model instead, an observation of x  could signify for instance , that , hence  

can be chosen to be the event that instead of a  negligible event (e.g. ). It follows from 

the integral representation that  would then be able to describe the behavior of 

as A shrinks down from a range of district-level time series  geopredictive malarial risk model outcomes to a 

single outcome. Importantly, the subscript means is -measurable in a SAS/GIS constructed 

model therefore, depends only on what is observed (e.g., district-level geopredictive field/clinical/remote-

sampled covariate coefficients) and not on any other hidden variables. 

Importantly, unlike non-Bayesian approach where  the time series malarial-related geoparameter hyperendemic 

transmission oriented estimators of interest would be  assumed to be deterministic, the Bayesian estimator seeks to 

estimate a geoparameter that is itself a random variable. Further, Bayesian probabilistic estimation can also deal 

with situations where the sequence of geosampled district-level observations are not necessarily independent. Thus, 

Bayesian estimation of district-level field/clinical/remote sampled explanatory hyperendemic transmission oriented 

covariate coefficients from and empirical ecological sampled dataset would provide yet another alternative to the 

MVUE for optimal district-level malaria-related risk modeling. The Bayes risk, in this case, would be the 

quantitated posterior variance where there is no inherent reason to prefer one prior probability distribution over 

another for risk modeling the sampled  field/clinical/remote sampled hyperendemic transmission oriented estimators. 

On occasion a conjugate prior is sometimes may be chosen for simplicity for Bayesian error modeling (Cressie 

1993).  

A conjugate prior is defined as a prior distribution belonging to some parametric family, for which the resulting 

posterior distribution also belongs to the same family. This is an important property, for risk modeling georferenced 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented covariate 

coefficients since the Bayes estimator, as well as its statistical properties (variance, confidence interval, etc.), can all 

be derived from the posterior distribution. Conjugate priors are especially useful for sequential estimation, for 

instance where the posterior of the current district-level malaria-related district-level field/clinical/remote sampled 

hyperendemic transmission oriented covariate coefficients measurement value is used as the prior in the next 

sampled measurement value. In sequential estimation, unless a conjugate prior is used, the posterior distribution 

typically becomes more complex with each added measurement, and the Bayes estimator cannot usually be 

calculated without resorting to numerical methods (Gilks 1996). 

Regardless, there are some examples of conjugate priors that may be employed in SAS/GIS for time series district-

level malarial risk modeling exercises For instance,  if x|θ is normal, x|θ ~ N(θ,ζ
2
) in the Bayesian malarial model , 

and the prior is normal, θ ~ N(μ,η
2
), then the posterior may be also normal and the Bayes estimator under MSE 

would be given by If x1,...,xn are i.i.d. Poisson random variables xi|θ ~ 

P(θ) in the risk model  and , if the prior is Gamma distributed θ ~ G(a,b), then the posterior would be  Gamma 

distributed, and the Bayes estimator under MSE  would be given by If x1,...,xn are i.i.d. 

uniformly distributed xi|θ~U(0,θ), and if the prior is Pareto distributed θ~Pa(θ0,a), then the posterior in the  risk 
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model would also be Pareto distributed, and the Bayes estimator under MSE would then be  given by 

 

The Pareto distribution with pdf and distribution function = and =  defined over the interval 

.  This may be  implemented in  SAS/GIS as ParetoDistribution[k, alpha]. The n th raw moment then would be  

 for , giving the first few as = , = , = and =  The n th central 

moment  in the  geopredictive malaria-related district level  field/clinical/remote sampled hyperendemic 

transmission oriented  covariate coefficient measurement values (n), for instance would be then be  quantitated  

employing = =  for  

where is a gamma function, is a regularized hypergeometric function, and is a beta 

function, which then would render  = , =  and 

=  Given a hypergeometric or generalized hypergeometric function 

, the corresponding regularized hypergeometric function in  a SAS/GIS derived 

geopredictive malaria-related risk model can be defined by 

 where is a gamma function. Regularized 

hypergeometric functions can be implemented in SAS/GIS as the functions Hypergeometric0F1Regularized[b, z], 

Hypergeometric1F1Regularized[a, b, z], Hypergeometric2F1Regularized[a, b, c, z], and in general, 

HypergeometricPFQRegularized[ a1, ...ap , b1, ..., bq , z]. The mean, variance, skewness, and kurtosis  thereafter  

in the malaria-related geopredictive time series risk model could be quantitated as 

= , = , = , =  

NDVI geoparameter estimators were then generated in ArcGIS using the QuickBird data. For the malaria-related 

NDVI value, the total areas were determined for specific surface vegetation-cover classes associated to the 

geosampled district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented  

covariate (e.g., floating and emergent vegetation LULC   and for a hybrid vegetation-cover class consisting of open 

water and submersed vegetation LULC). The vegetation- canopy cover class comprising the largest total area was 

then assigned to NDVI value. The equation ArcGIS Image Server employed to generate the output (i.e., NDVI = 

arctangent ((IR – R)/(IR+R)) produced a single-band dataset from the satellite data product. The differential 

reflection in the red and infrared (IR) bands from the imager enabled quantifying density and intensity of green 

vegetation growth at various LULC district-level sample sites using the spectral reflectivity of solar radiation 

We then generated a correlation error matrix in ArcGIS to determine the accuracy of the district-level geopredictive 

malaria-related vegetation-related LULC predictors. The row in the matrix represented the QuickBird NDVI 

geoparameter estimators constructed from the satellite data products, while the columns represented the reference 

data (ground truth, in-situ sampled data). We generated measures of thematic accuracy including overall 

classification accuracy and percentage of omission.  In this research, the vegetated canopy-related district-level 

explanatory hyperendemic transmission oriented parameter estimator percentage of omission was based on the 

percentage of QuickBird pixels that were in a given NDVI class but that which were not identified. Additionally, we 

generated the commission error which indicated pixels that were not identified, but were within a particular NDVI 
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class. A residual normalized uncertainty matrix output was then generated using the user's and producer's accuracy-

combined measures and the field-verified estimates of the NDVI thematic vegetation canopied geopredictive 

district-level variables. As primary accuracy measures, these relative entropy change measures were normalized by 

the arithmetic mean of the vegetated canopied entropies generated by the proxy map variables. The overall 

classification accuracy of the QuickBird NDVI thematic maps revealed the highest level of accuracy  ( i.e., 93% 

with a kappa value of .89).The spatial variation of the  NDVI geoparameters were then measured for determining 

surfaces of the georeferenced canopy vegetated district level estimators. It was found that emissivity was highly 

correlated with QuickBird NDVI after logarithmic transformation, with an average correlation coefficient of R = 

0.94 throughout the study site districts. 

The results of this analysis revealed that that there is more variability in district-level vegetated canopied malarial-

related explanatory hyperendemic transmission oriented covariate coefficients   across a single field . As more 

classes were added, the ability to determine areas that were healthier from those that were less healthy was 

enhanced. However, there may be certainly a limit to the fidelity that is needed to be explored in robust 

geopredictive district-level   malarial risk analyses by comparing field measurements of plant productivity to 

QuickBird NDVI values. By so doing, a local abatement district manager could determine what range of NDVI 

values and at what time in the phonological development cycle correspond to areas of less productive immature 

growth for georeferenced seasonal anopheline mosquito aquatic larval aquatic habitats, for instance. Once identified, 

these geolocations could be easily seasonally mapped based on NDVI signatures.  With QuickBirds ability to collect 

imagery over large areas on a daily basis, its value in high precision vegetated canopied  district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented explanatory covariate coefficients 

measurements mapping  cannot be understated.  

In this research a traditional spatiotemporal linear hyperendemic district-level geopredictive malarial transmission-

oriented risk-based regression model was constructed in PROC REG employing the seasonal-sampled district-level 

field/clinical/remote sampled malaria-related explanatory hyperendemic transmission oriented covariate coefficients 

measurements. The model was described as   for forecasting the district-level statistical 

units. The response values was placed in a vector Y = (y1, ..., yn)′in the model and the spatiotemporal-

field/clinical/remote sampled explanatory covariate coefficient  measurement values were placed in the design 

matrix X = [[xij]] in SAS/GIS, where xij was the value of the jth  variable for the ith sampled district-level statistical 

sample unit. The model assumed that the conditional mean of Y provided X was a linear function of X, whereas, the 

conditional variance of Y was provided by X a known matrix Ω. In this research this relationship  was written 

as Here β was a vector of unknown district-level ―regression 

based coefficients‖ in the linear hyperendemic malarial transmission-oriented risk-based  model that had to be 

estimated from the seasonal–sampled district-level data. We noted that when b was a candidate estimate for β in the 

model, then the residual vector for b was quantitated by Y − Xb. 

The straightforward derivation of the linear district-level malarial model, however, from the negative binomial 

probability distribution function did not equate with the Poisson–gamma mixture-based version of the negative 

binomial. Rather, canonical link and inverse canonical link were converted to log form. A GLM-based negative 

binomial was then produced that yielded identical geoparameter estimators based on the regressed 

field/clinical/remote explanatory hyperendemic transmission-oriented covariate coefficient to those calculated by the 

mixture-based model. As a non-canonical linked model however, the standard errors did differ slightly from the 

mixture model. A ML estimator in SAS/GIS employed an observed information matrix to produce standard errors. 

The GLM algorithm produced standard errors, based on the expected information matrix using the difference in 

standard errors in the negative binomial analyses. The GLM negative binomial algorithm was, thereafter, amended 

to allow production of standard errors based on the geosampled  district-level field/clinical/remote sampled malarial 

related hyperendemic transmission oriented explanatory covariate coefficients measurements. The amended GLM-

based negative binomial produced identical estimates and standard errors to that of the mixture-based negative 

binomial analyses. The log-negative binomial data was then imported into an ArcGIS database, using the spatial 

analytical tools in SAS/GIS. 
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 An autoregressive model specification was then constructed in SAS/GIS to describe the variance uncertainty 

estimates in the regressed district-level field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented covariate coefficients. The Jacobian generalized the gradient of a scalar-valued function of multiple 

georefenced district-level geopredictor variables which were generalized by the derivative of a scalar-valued 

function. A more complex specification was then posited by generalizing binary indicator variables. We used F: R
n 

→ R
m 

as a function from Euclidean n-space to Euclidean m-space which was generated using the linearized  

seasonal- sampled district-level hyperendemic transmission oriented explanatory covariate coefficients. The function 

was provided by m covariate (i.e., component functions), y1(x1, xn), ym(x1, xn). The partial derivatives of all these 

functions were organized in an m-by-n matrix, whereby the Jacobian matrix J of F, followed 

.This matrix was denoted by JF (x1,..., xn) and . The i th row (i = 1,..., m) of this 

matrix was the gradient of the i
th 

component function yi:(∇ yi). In this analyses p was a geosampled district-level 

malarial-related estimator in R
n 

where F was differentiable at p. As such, its derivative was given by JF(p). The 

model described by JF(p)) was the best linear approximation of F near the sampled district-level  point p, in the 

sense that: . The spatially adjusted models identified the clustering 

patterns of the geosampled district-level field/clinical/remote sampled hyperendemic transmission oriented 

explanatory covariate coefficients measurements in the seasonal empirical ecological dataset. The residually 

forecasted estimates accounted for all conditional heteroskedastic error terms in the model. 

We then attempted a method of generalized differencing for quantitating the residual autocorrelation error 

coefficients in our district-level seasonal regression-based risk map for remotely targeting areas of district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented explanatory covariate coefficients 

measurements. By so doing, the generalized differencing allowed a transformed equation to be developed from 

which optimal linear unbiased uncertainty estimates obtained from an OLS. A full specification of the first order 

autocorrelation error [YT = 0 + 1 X1t + 2 X2t +  t-1 + VT (eqn 4.4)] was then generated in ArcGIS Geostatistical 

Analyst.  In this research we lagged the equation and multiplied it by   which  rendered  Yt-1  =  0 +  1 X1t-1  + 

 2 X2t-1  + 
2
 t-2 +  vt-1 (eqn 4.5). We subtracted Eqn 4. 5 from Eqn 4.4. which then yielded Yt  -  Yt-1  = 0 -  

0 + 1 X1t  -  1 X1t-1  + 2 X2t -  2 X2t-1  +  t-1 - 
2
 t-2 + vt -  vt- . By so doing, however, Yt  -  Yt-1  = 0(1 - ) 

+ 1(X1t  -  X1t-1 ) + 2 (X2t -  X2t-1 ) + vt, could not be  quantitated. Theoretically, the model should have rendered  

 t-1 - 
2
 t-2 + vt -  vt-1which then would have been equivalent to t -  t-1 which, in turn, would have represented 

the first order error in the geopredicted district-level malarial-related autoregressive risk model. In previous 

malarial-related research (Jacob et al. 2011c and Jacob et al. 2009d) quantified multiple seasonal-sampled  

geopredictive malaria-related covariate coefficients   employing : 
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In this research we could not determine the eigenvectors  to filter spatial autocorrelation in the 

generic autoregressive model from each sampled district-level estimator. Ordinarily, the next step would have been 

to attempt to identify suitable and parsimonious subsets of eigenvectors  or  from either sampled model 

specification (2.1) or (2.2). This would have identified a particular subset of the geopredictive autoregressive 
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district-level malarial risk model error matrix eigenvectors which may have been delineated as suitable if the 

residuals  of the resulting spatially filtered model residual forecasts estimates became stochastically independent 

with respect to the underlying sampled spatial structure . 

As such, the dependency in our model was then analyzed using random effect specifications. Random effects model 

specifications address samples for which observations are selected in a highly structured rather than random way, 

and involve repeated measures in frequentist analyses (Haight 1967). Commonly, time-series malarial related data 

furnishes a repeated measures context (Jacob et al. 2005b). An average for each time series exists for a space-time 

dataset (Griffith 2003). In this research, this average ignored both spatial and serial error correlation coefficients in 

the space-time district-level malaria-related series. A random effects model essentially works with these averages, 

adjusting them in accordance with the correlational structure latent in their parent space-time series, as well as their 

simultaneous estimation (Griffith 2003). Instead, in this research, the random effects model specification was 

achieved by fitting a distribution with as few geoparameter district-level field/clinical/remote sampled malaria-

related explanatory hyperendemic transmission oriented covariate coefficients estimators as possible (e.g., a mean 

and a variance for a bell-shaped curve), rather than n means (i.e., fixed effects) for the n sampled district-level 

geolocational attributes. Consequently, we were able to distinguish a relationship which existed between the time 

series means and the random effects. This random effects specification included n indicator variables, each for a 

separate specific district local intercept where one local intercept was arbitrarily set to 0 to eliminate perfect 

multicollinearity within the global mean. Here, the local mean for district 112 was set to 0. The estimated global 

mean was -3.6723, the mean of the random effects term was -0.0010, and the mean of the local means was 0.4837; 

the sum of these three values was 3.1876, which in this research was exactly the same as the random effects global 

mean. The scatterplot of the random effects versus the local intercepts corresponded to a straightly line with no 

dispersion about it.  

By using a random effect specification we were able to determine malarial prevalence at the district-level throughout 

the Ugandan study site. The following equation was thereafter employed to forecast the expected value of the 

prevalence of malaria for district: prevalence = exp[-3.1876 + (random effect)i]. Although, the number of degrees of 

freedom in our models where so large that the CIs had a width approaching 0, we were still able to successfully 

construct a predictive district-level spatiotemporal malaria risk model. We then added geomorphological land cover 

statistics derived from the DEM and band radiance estimates to create more robust indices based on our primary 

model estimates.  

This model was then based on tabulated accessory geomorphological hyperendemic transmission oriented estimators 

and band radiance values at the district-level, a model random effects term, and a regressed district-level prevalence 

count. The Poisson mean response specification was then:  = exp[a + re + LN(population)] , Y ~Poisson(mu) 

+DEM (zonal statistic). The mixed-model estimation results included: a = -3.1876 re ~ n(0, s
2
) mean re = -0.0010 s

2
 

= 0.2513 where P(S-W) = 0.0005 and the Pseudo-R
2
 = 0.3103. By using a random effect specification and a DEM 

district-level covariate along with the quantitated band radiance data at the district-level, we were able to forecast 

prevalence at the district-level throughout the study site. The goodness-of-fit feature implied that although the 

random effects term combined with the DEM statistics could be used for geopredictive purposes cases, as counts, 

was still the response variable, supporting the use of a Poisson probability model specification. In order to describe 

prevalence at the district-level at the study site the following equation was then generated in SAS/GIS to forecast the 

expected value of the prevalence of malaria for each district at the study site: district: prevalence =exp[-3.1876 + 

(random effect)i] +mean DEM.  For instance, the forecasted value for Abim was exp(-3.1876 + 0.89982) = 0.1015 , 

95% CI = 90.10114, 0.10185) + a log-transformed DEM mean value of 1189.9.  This random intercept represented 

the combined effect of spatiotemporal collected data (e.g., median rainfall) that caused districts to be more prone to 

the malaria prevalence than other districts. 

 In this research we revealed that quantiating geospatial autoregressive correlation in ArcGIS employing district-

level SAS-derived malaria-related regression-based field/clinical/remote hyperendemic transmission oriented  

attributes can be expressed in a Pearson product–moment correlation coefficient formula. Pearson's correlation 

coefficient between two geosampled district-level hyperendemic transmission oriented variables can then be  

defined as the covariance of the two variables divided by the product of their standard deviations. Further, for 

identifying outliers in a spatiotemporal dataset of autoregressively predicted malarial-related residual forecasts 

http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
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univariate analyses (e.g., show min, max, skewness and kurtosis), in SAS/GIS may help generate scatterplots, 

residual plots. Normal probability plots, regression for outlier diagnostics including standardized residuals, Hat 

diagonals, Cook's D stats, etc.) can then be examined (e.g., by using the "INFLUENCE" and "R" options in PROC 

REG's MODEL statement).  

Importantly fdasave, fdause, can  describe and  convert time series district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented geopredictive autoregressive uncertainty estimators datasets  of 

to and from  statistical  format for new device applications [e.g., Personal Digital Assistants (I-phone)] using SAS 

XPORT Transportformat. The primary intent of these commands is to assist malarialogists/experimenters for 

making data submissions tbut the commands are general enough for use in transferring data between SAS/GIS and 

Stata. To save the data in memory in the format, a malarialogist/experimenter simply need type. fdasave filename 

fdasave filename. Any district-level field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented predictive autoregressive uncertainty estimators can then be labeled using the rename option. In any case, 

Stata will create filename.xpt as an XPORT file containing the data and, if needed, will also create formats.xpf—an 

additional XPORTfile—containing the value-label definitions. These files can be easily read into SAS/GIS.To read 

a SAS XPORT Transport residually forecasted district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented predictive autoregressive uncertainty estimator file into Stata the 

malarialogist/experimenter would simply have to ,type. fdause filename Stata will read into memory the XPORT file 

filename.xpt containing the sampled district-level  data and, if available, will also read the value-label definitions 

stored in formats.xpf or FORMATS.xpf. The residually forecasted district-level field/clinical/remote sampled 

malaria-related hyperendemic transmission oriented geopredictive autoregressive uncertainty estimators  will then 

be part of the contents of a SAS XPORT Transport file.  

 

Further, fdasave can overwrite existing filename.xpt, formats.xpf, and filename.sasfiles. Thereafter vallabfile(xpf | 

sascode | both | none) can be employed to specify whether and how time series district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented geopredictive autoregressive uncertainty estimators 

value labels are to be stored. SAS XPORT Transport files do not really have value labels (www.sas.com). In 

preparing geopredictive time series district level malaria-related datasets for submission, value-label definitions 

should be provided in one of two ways: 1. In an additional SAS XPORT Transport file whose data contain the value-

label definitions 2. In a SAS command file that will create the value labelsfdasave can create either or both of these 

files. The vallabfile(xpf) can then specify that value labels be written into a separate SAS XPORT .Thus, fdasave 

will creates two files during the geopredictive time series modeling stage 1) filename.xpt, containingthe time series 

district-level field/clinical/remote sampled malaria-related hyperendemic transmission oriented predictive 

autoregressive uncertainty estimators data, and 2)formats.xpf, containing the value labels. Fortunately no 

formats.xpf file is created if there are no value labels. SAS-based malarialogists/experimenters can easily use the 

resulting .xpt and .xpf XPORT files (See http://www.sas.com/govedu/fda/macro.html for SAS-provided macros for 

reading the XPORT files.  

 

The SAS macro from exp() will read the XPORT files into SAS if so desired thereafter. By so doing, the SAS macro 

to exp() t will create XPORT files. When obtaining the macros, the malarialogist/experimenter must remember to 

save the macros at SAS‘s web page as a plain-text file. If the SAS macro file is saved as C:\project\macros.mac and 

the files mydat.xpt formats. xpf created by fdasave would be in C:\project\. The following SAS commands would 

then create the corresponding SAS/GIS dataset and format library and list the time series district-level 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented geopredictive data  using SAS 

commands including "C:\project\macros.mac" ;%from exp(C:\project, C:\project) ;libname library ‘C:\project‘ ; 

data _null_ ; set library.mydat ; put _all_ ; run ; proc print data = library.mydat ;and,quit. Theereater  vallabfile will  

specify which value labels can be written into a SAS command file(i.r., ,filename.sas), containing SAS proc format 

and related commands. For instance, fdasave may create two files when constructing a robust predictive malarial-

related risk model: filename.xpt, containing the time series district-level field/clinical/remote sampled hyperendemic 

transmission oriented geopredictive autoregressive estimators and filename.sas, containing the value labels.  

Additionally, SAS-based malarialogists/experimenters may wish to edit the resulting filename.sas file to change the 

―libname datapath‖ and ―libnamexptfile xport‖ lines to correspond to a specific district-geolocation.  Fortunately 

fdasave will set the district-level geolocation to the current working directory at the time fdasave was issued. No .sas 

file will be created if there are no value labels(www.sas.edu).  
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Alternatively,Vallabfil e(both) may specify that both the actions described above be taken while other filesare  

created: filename.xpt, containing the time series district-level field/clinical/remote sampled malaria-related 

hyperendemic transmission oriented predictive data; formats.xpf, containing the value labels in XPORT format; and 

filename.sas, containing the value labels in SAS command-file format.vallabfile(none) specifies that value-label 

definitions not be saved.  

 

 SAS XPORT Transport file may contain one or more separate time series district-level field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented geopredictive data datasets, known as members.It is 

rare for a SAS XPORT Transport file to contain more than one member. 

Seehttp://support.sas.com/techsup/technote/ts140.html for the SAS technical document describing the layout of the 

SAS XPORT Transport file.A SAS XPORT time series district-level hyperendemic transmission oriented 

geopredictive data dataset (member) however is subject to certain restrictions:1. The dataset may contain only 9,999 

variables. 2. The names of the field/clinical/remote sampled hyperendemic transmission oriented variables and value 

labels may not be longer than eight characters and are case insensitive;( e.g., myvar, Myvar, MyVar, and MYVAR 

are all the same name.)3. Variable labels may not be longer than 40 characters. The contents of a sampled time 

series district-level field/clinical/remote hyperendemic transmission oriented geopredictive variable may be numeric 

or string:a. Numeric variables may be integer or floating but may not be smaller than 5.398e– 79 or greater than 

9.046e+74, absolutely. Numeric variables may contain missing which may be ., . , .a, .b, . . . , .z. b. String variables 

may not exceed 200 characters. String variables are recorded in a―padded‖ format, meaning that, when variables are 

read, it cannot be determined whether the variable had trailing blanks.5. Value labels are not written in the XPORT 

dataset. Therefor suppose  a malarialogist/experimenter  uses the variable  0 and 1, for representing district-sampled 

anopheline aquatic habitat larval data where the values are labeled as(0=0 larval density count , and 1> everything 0 

count ). When the dataset is written in SAS XPORT Transport format, the malarialogist/experimenter would  record 

that the variable label  as associated with the larval count  variable, but this may not be recorded as  the association 

with the value labels  0 and 1. Value-label definitions are typically stored in a second XPORT dataset or in a text file 

containing SAS commands (www.sas.com).Instead the malarialogist/experimenter may use the vallabfile() option of 

fdasave to produce these datasets or files. By so doing, Value labels and formats can then be recorded in the same 

position in an XPORT file, meaning that names corresponding to formats can be  used in SAS/GIS.  

 

SAS/GIS software provides an interactive GIS within the SAS System enables viewing the sampled malarial data in 

its spatial context (www.esri.com). The ODS GRAPHICS of PROC REG in SAS/GIS, for instance, can 

automatically produce residually forecasted field/clinical/remote hyperendemic transmission-oriented district-level 

outlier diagnostic plots, Thereafter, a malarialogist/experimenter can use the free outlier attribute data in SAS/GIS as 

themes for layers within the module for generating robust risk-based district-level estimators . Under the null 

hypothesis of no autocorrelation, this data would be asymptotically distributed as with k degrees of freedom. 

Responses to nonzero autocorrelation can then be devised including  GLS and the Newey–West estimator 

(Heteroskedasticity and Autocorrelation Consistent (HAC) in various SAS/GIS-related modules (e,g., PROC NL 

MIXED) for deriving Pearson's correlation coefficients between  any two tiem series district-level hyperendemic 

malarial transmission-oriented risk-based model variables which can then be  defined as the covariance of the two 

variables divided by the product of their standard deviations.  

 

By graphically portraying the relationship between two quantitative variables measured for the same district-level 

hyperendemic malarial transmission-oriented risk-based forecasted model observation, a scatterplot in SAS/GIS 

may then relate to the numerical values rendered by a correlation coefficient formula. This would be essential for 

ascertaining a viable residual diagnostic predictive error estimator within the framework of a time series 

hyperendemic transmission-oriented ARIMA malarial-related model as the residuals would be tabulated employing 

an average of the sampled  numerical specifications between the  georeferenced specific estimators for defining all 

possible pairs of sampled district-level geolocations. But since these time-series are unobservable, the assumption 

invoked would be exchangeability whereby, the set of time series can be permuted without affecting results in the 

geopredicted SAS/GIS constructed  district-level malarial model residual forecasts.   

The order in which a time series mechanism generates the field/clinical/remote sampled explanatory hyperendemic 

transmission oriented covariate coefficients measurement indicator values across an interpolated spatiotemporal 

http://en.wikipedia.org/wiki/Newey_West
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
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district-level autocovariate regression-based risk map would thus be irrelevant. Instead district-level areas with 

statistically higher transmission rates, (e.g., positive correlated clusters) based on seasonal-sampled parasitological 

indicators (e.g., prevalence rates) in SAS/GIS can then be mathematically calculated and precisely targeted using a 

robust eigendecomposition spatial filter algorithm. By so doing, autocorrelation coefficients representing district-

level time series malarial-related residually  forecasted epidemiological data  may be quantitated  for spatially 

adjusting  district –level  seasonal geopredictive SAS/GIS hyperendemic transmission-related risk map data feature 

attributes in geospace. 

Further, if the district-level seasonal predictive malarial model regression errors  are uncorrelated in SAS/GIS, 

the residually forecasted  estimates, targeting the district-level hyperendemic transmission-oriented explanatory 

covariate coefficients would be robust. Even if the residual forecasts have distinct variances ζi
2
, then 

 can be estimated with  in SAS/GIS. This would provide a heteroskedasticity-

consistent estimator [e.g., ]. For instance, the 

heteroscedasticity consistent covariance matrix estimator (HCCME), also well-known as the sandwich, or empirical 

covariance matrix estimator, has been popular in recent years in SAS/GIS since it gives the consistent uncertainty 

estimation of the covariance matrix of the sampled geoparameter estimates even when the heteroscedasticity 

structure might be unknown or misspecified.  

White (1980) first proposed the concept of HCCME, known as HC0. However, the small-sample performance of 

HC0 was not   a powerful uncertainty estimator in seasonal geopredictive time series models. Davidson and 

MacKinnon (1993) then introduced more improvements of HC0, namely HC1, HC2 and HC3, with the degrees of 

freedom or leverage adjustment. Cribari-Neto (2004) then proposed HC4 to deal with cases that have points of high 

leverage.  

Presently, HCCME in SAS/GIS can be expressed in the following general ―sandwich" form:  where 

, which stands for ―bread", which is  the Hessian matrix and , which stands for ―meat", which is the outer 

product of gradient (OPG) with or without any adjustment. The Hessian matrix is the square matrix of second-order 

partial derivatives of a function; that is, it describes the local curvature of a function of many variables (Cressie 

1993). For HC0,  is the OPG without adjustment; that is, where  for instance is the district level 

predictive hyperendemic transmission oriented  malarial-related data sample size and  is the gradient vector of th 

observation. For HC1,  then would be  the OPG with the degrees of freedom correction; that is, 

where k is the number of sampled district-level geoparameters. For HC2, HC3, and HC4, the 

adjustment then would be  related to leverage, namely, 

 .The leverage  can then be defined as 

, where is defined as follows: For an OLS geopredictive district-level malaria-related time 

series risk model,  would then be  the th observed field/clinical/remote-related regressors in column vector form.  

For an ARIMA error model,  would then be the derivative vector of the th residual with respect to time series 

district-level explanatory hyperendemic transmission oriented geoparameters. Thereafter, a generalized method of 

moments (GMM) framework can be constructed in SAS/GIS for further quantitation of the geosampled explanatory 

hyperendemic transmission oriented covariate coefficients. 

 Generalized method of moments is a general estimation principle. A generic method for estimating geoparameters 

in SAS models is GMM (Cressie 1993). The method in SAS/GIS requires that a certain number of moment 

conditions be specified for constructing a robust district-level geopredictive time series malarial-related risk model. 

The moment conditions would then be functions of the model sampled district-level parameter estimators and the 

malarial district level data, such that their expectation would be zero. Suppose the available district-level data 

consists of T i.i.d. field/clinical/remote geosampled explanatory hyperendemic transmission oriented  observations 

{Yt } t = 1,...,T, where each observation Yt is an n-dimensional multivariate random variable. The model data may then 

be defined by an unknown geoparameter θ ∈ Θ. The goal of the estimation problem in the risk model then would be 

to find the ―true‖ value of this geoparameter, θ0, or at least a reasonably close estimate. In order to apply GMM there 

http://support.sas.com/documentation/cdl/en/etsug/63939/HTML/default/etsug_autoreg_sect043.htm#whit_h_80
http://support.sas.com/documentation/cdl/en/etsug/63939/HTML/default/etsug_autoreg_sect043.htm#davi_r_93
http://support.sas.com/documentation/cdl/en/etsug/63939/HTML/default/etsug_autoreg_sect043.htm#crib_f_04
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Generalized_method_of_moments
http://en.wikipedia.org/wiki/Generalized_method_of_moments
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Iid
http://en.wikipedia.org/wiki/Multivariate_random_variable
http://en.wikipedia.org/wiki/Parameter
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would also exist a vector-valued function g(Y,θ) such that where E denotes 

expectation, and Yt is a generic geosampled malaria-related district-level explanatory hyperendemic transmission 

oriented  observation, which would then be assumed to be i.i.d. Moreover, function m(θ) in the sampled dataset 

would not be equal to zero for θ ≠ θ0, or otherwise the geoparameter θ will not be point-identified. The basic idea for 

constructing a GMM geopredictive district-level seasonal malarial-related risk model in SAS/GIS  would then be  to 

replace the theoretical expected value E[⋅] with its empirical analog — sample 

average: and then to minimize the norm of this expression with respect to 

θ. 

By the law of large numbers, for any large predictive district-level seasonal sampled 

explanatory hyperendemic trasnmission oriented district-level field/clinical/remote sampled covariate coefficients 

measurements values of T  thereafter  a malarialogist/experimenter should expect that . The 

generalized method of moments would look for a number  which would make as close to zero as possible. 

Mathematically, this is equivalent to minimizing a certain norm of (norm of m) in a SAS/GIS database 

whereby ||m||, would measures the distance between m and zero. The properties of the resulting district-level 

estimator will depend on the particular choice of the norm function, and  as such the GMM would consider an entire 

family of norms, defined as where W is a positive-definite weighting 

matrix, and m′ denotes transposition.  

In practice, the weighting matrix W  usually (denoted as ) . in SAS/GIS may be  computed based on any available 

empirical sampled  dataset of  field/clinical/remote geosampled explanatory hyperendemic transmission oriented  

observations Thus, the GMM estimator can be written 

as . Under suitable conditions this estimator is 

consistent, asymptotically normal, and with right choice of weighting matrix asymptotically efficient.  The GMM 

method would then minimize a certain norm of the sample averages of the moment conditions in the district-level 

empirical datset. The GMM estimators  may then be found to be  asymptotically normal, and efficient in the class of 

all time series estimators that do not use any extra information aside from that contained in the moment conditions 

for accurate quantitation of district-level field/clinical/remote sampled malaria-related hyperendemic transmission 

oriented explanatory covariate coefficients measurements. 

Dickey-Fuller unit root tests based on regression models may be also constructed  in SAS/GIS which can employ 

 where is assumed to be white noise (Cressie 1993) for quantitating statistically 

significant district-level malaria-related hyperendemic transmission oriented estimators. The testing procedure for 

the Dickey–Fuller test may also be  applied to the model 

 where is a constant, 

the coefficient on a time trend and the lag order of the autoregressive process. Imposing the constraints 

and corresponds to modeling a random walk and using the constraint corresponds to 

modeling a random walk with a drift (e.g., Cressie 1993). Further, by including lags of the order p in any time series 

malarial-related geopredictive  formulation will allow for higher-order autoregressive processes in the sampled 

district-level data. This means that the lag length p has to be determined when applying the test. One possible 

approach is to test down from high orders and examine the field/clinical/remote sampled explanatory hyperendemic 

transmission covariate coefficient t-values. An alternative approach may be to  examine information criteria such as 

BIC .  

In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is a criterion for model 

selection among a finite set of models (Cressie 1993). The BIC is an asymptotic result derived under the 

http://en.wikipedia.org/wiki/Vector-valued_function
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://en.wikipedia.org/wiki/Norm_(mathematics)
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Consistent_estimator
http://en.wikipedia.org/wiki/Asymptotic_normality
http://en.wikipedia.org/wiki/Efficient_estimator
http://en.wikipedia.org/wiki/Norm_(mathematics)
http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Asymptotic_distribution
http://en.wikipedia.org/wiki/Efficient_estimator
http://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test
http://en.wikipedia.org/wiki/T-value
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Model_selection
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assumptions that the data distribution is in the exponential family. A robust geopredictive district-level time series 

risk model may be constructed in SAS/GIS  if malarialogist/experimenter then lets: = the observed sampled 

field/clinical/remote district level  data; = the number of data points in , the number of hyperendemic 

transmission oriented observations, or equivalently, the sample size; and, = the number of free geoparameters to be 

estimated. If the model under consideration is a linear regression,  would then be the number of regressors, 

including the intercept; = the marginal likelihood of the observed data given by the model ; (that is, 

the integral of the likelihood function times the prior probability distribution over the 

geoparameters of the model for fixed observed sampled district-level data  );and, = the maximized value 

of the likelihood function of the model , (i.e. , where are the geoparameter estimator 

values that maximize the likelihood function). The formula for the BIC 

is: ( see Akaike 1977).Under the assumption that 

the model errors or disturbances are i.d.d. according to a normal distribution and that the boundary condition that the 

derivative of the log likelihood with respect to the true variance is zero, this becomes expressed as 

where is the error variance. The error variance in this case is defined 

as  

By so doing, a malarialogist/experimenter may point out from probability theory that is a biased 

field/clinical/remote sampled estimator for the true variance, .This may be facilitated by a 

malarialogist/experimenter by letting denote the unbiased form of approximating the error variance in the 

district-level geosampled malarial-related district-level explanatory hyperendemic transmission oriented covariate 

coefficients  which may be defined by Additionally, under the assumption of 

normality the following version may be more tractable  Note that there is a constant 

added that follows from transition from log-likelihood to ; however, in using the BIC to determine the "best" 

district-level malarial risk model the constant becomes trivial. Given any two estimated models, the model with the 

lower value of BIC is the one to be preferred (Gilks 1996). The BIC is an increasing function of and an 

increasing function of k (Griffith 2003).That is, unexplained variation in the dependent variable (e.g., district-level 

prevalence rate) in a robust geopredictive malaria-related district-level time series model and the number of  

field/clinical/remote sampled explanatory variables increase the value of BIC. Hence, lower BIC implies either 

fewer explanatory variables, better fit, or both in the risk model output. It is important to keep in mind that the BIC 

can be used to compare estimated models only when the numerical values of the dependent variable are identical for 

all estimates being compared (Cressie 1993). Additionally, the geopredictive risk model outputs being compared 

need not be nested, unlike the case when the residual derivatives are being compared using an F or likelihood ratio 

test.The unit root test may then be carried out under the null hypothesis against the alternative hypothesis of 

Once a value for the test statistic is computed for a predictive malaria-related 

district-level time series risk model it can be compared to the relevant critical value for the Dickey–Fuller Test. If 

the test statistic is less than the larger negative)critical value in the risk model residual forecasts then the null 

hypothesis of is rejected and no unit root is present. 
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Fortunately, there are two popular ways to account for general serial correlation between these type of errors in 

SAS/GIS. One is the augmented Dickey-Fuller (ADF) test, which uses the lagged difference in the regression model. 

This was originally proposed by Dickey and Fuller (1979) and later studied by Said and Dickey (1984) and Phillips 

and Perron (1988). Another method was proposed by Phillips and Perron (1988); it is called Phillips-Perron (PP) 

test. The tests adopt the original Dickey-Fuller regression with intercept, but modifies the test statistics to take 

account of the serial correlation and heteroscedasticity. In a geopredictive district-level SAS/GIS derived malaria-

related time series risk model this would be a  nonparametric specification as no specific form of the serial 

correlation of the residually forecasted  district-level field/clinical/remote sampled malaria-related hyperendemic 

transmission oriented explanatory covariate coefficients measurement errors would be  assumed.  

A problem of the Dickey-Fuller and Phillips-Perron unit root tests is that they are subject to size distortion and low 

power. It is reported in Schwert (1989) that the size distortion is significant when the series contains a large MA 

geoparameter estimation. Among some more recent unit root tests that improve upon the size distortion and the low 

power are the tests described by Elliott, Rothenberg, and Stock (1996) and Ng and Perron (2001). These tests would 

involve a step of detrending the test statistics in SAS/GIS prior to constructing the geopredictive seasonal district-

level malarial risk model constructed from seasonal-sampled field/clinical/remote explanatory hyperendemic 

transmission oriented covariate coefficients measurements. Most autoregressive testing procedures specify the unit 

root processes in SAS products  as the null hypothesis(www.sas.com). 

Further by constructing augmented Dickey-Fuller (ADF) and Phillips-Perron unit root tests, a group of time series 

geopredictive malarial-related field/clinical/remote sampled hyperendemic transmission oriented regression-based 

risk model  may be a linked together by some long-run equilibrium relationship. Statistically, this phenomenon can 

be modeled by quantitating cointegration when constructing the risk model from an empirical sampled dataset of 

predictive time series district-level malaria-related field/clinical/remote hyperendemic transmission oriented 

explanatory covariate coefficients measurements. It is an augmented version of the Dickey–Fuller test for a larger 

and more complicated set of time series models. The ADF statistic, used in the test, is a negative number. Thus the  

more negative it is in the district level model output, the stronger the rejection of the hypothesis that there is a unit 

root at some level of confidence. The testing procedure for the ADF test is the same as for the Dickey–Fuller test but 

it is applied to the model where is a 

constant, the coefficient on a time trend and the lag order of the autoregressive process (Cressie 1993). Imposing 

the constraints and corresponds to modeling a random walk and using the constraint 

corresponds to modeling a random walk with a drift. 

When several nonstationary processes are cointegrated, there exists a cointegrating vector 

such that is stationary and is a nonzero vector (Griffith 2003). One way to test the relationship of 

cointegration is the residual based cointegration test in a district- level time series geopredictive  malarial risk model 

is by employing the model where , , and = ( , , . The OLS 

residuals from the risk model could then be employed to test for the null hypothesis of no cointegration in the 

empirical field /clinical/remote sampled hyperendemic transmission oriented geoparameter estimator dataset.  

An Engle-Granger Cointegration test may also be employed for constructing a robust predictive malarial-related 

district-level time series  risk model in SAS/GIS from empirical sampled field/clinical/remote sampled 

hyperendemic transmission oriented explanatory covariate coefficients measurements. Common unit root tests have 

the null hypothesis that there is an autoregressive unit root , and the alternative is , where 

is the autoregressive coefficient of the time series . This is referred to as the zero mean model.  

For the zero-mean seasonal-sampled predictive district-level malaria-related risk model constructed from an 

empirical dataset of district-level field/clinical/remote sampled time series malaria-related hyperendemic 

transmission oriented explanatory covariate coefficients measurements, the asymptotic distributions of the Dickey-

Fuller test statistics would be quantitated as   

. For the constant mean model, the 

http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#dick_d_79
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#said_s_84
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#phil_p_88
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#phil_p_88
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#schw_g_89
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#elli_g_96
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#ng_s_01
http://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test
http://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

128 

 

asymptotic distributions in the malaria-related risk model would then be 

For the predictive malaria-related trend 

model, the asymptotic distributions could thereafter be derived using: 

 

where if so desired. 

The null hypothesis of the Dickey-Fuller test for a robust geopredictive malaria-related time series district-level risk 

model then would be a random walk, possibly with drift. By so doing, the differenced process in the residual 

forecasts targeting the statistically  significant hyperendemic transmission oriented covariate coefficients would then 

be not serially correlated under the null of 1 (Cressie1993). Interestingly, nonstationary multivariate time series 

district-level malaria-related explanatory hyperendemic transmission oriented covariate coefficients can thereafter 

be tested for cointegration, which means that a linear combination of these time series district-level data would be 

assumed stationary. Formally, denoting the series by  would then render robust residual 

field/clinical/remote related hyperendemic transmission oriented residual forecasts. The null hypothesis of 

cointegration would be that that there exists a vector c such that  is stationary. Residual-based cointegration tests 

may be then studied in depth for robust district-level malarial related geopredictive time series uncertainty modeling. 

The first step in this uncertainty regression model, would be   where , , 

and = ( , , . This regression may also include an intercept or an intercept with a linear trend. The residuals 

would then be tested for the existence of an autoregressive unit root. 

 Engle and Granger (1987) proposed ADR type regression without an intercept on the residuals to test the unit root. 

This series may then be expressed as the sum of the deterministic trend, random walk , and stationary error  in 

SAS/GIS; that is, where i.i.d. , and an intercept . The null 

hypothesis of trend stationary would then be specified by  in the risk model residual forecasts targeting 

the district level statistically significant hyperendemic transmission oriented explanatory covariates while the null of 

level stationary would be quantitated with the model restriction . Under the alternative that  in the 

district-level risk model there would also be a random walk component in the observed series .  

Interestingly, when the first step OLS does not include an intercept, in the  geopredictive district-level malaria-

related risk model the asymptotic distribution of the ADF test statistic may be given by 

, and 

where is a vector standard Brownian motion and  

is a partition such that is a scalar and is  dimensional. Further, by including lags of the order p, the 

ADF formulation would allow for higher-order residual autoregressive processes to be quantitated in the  

hyperendemic transmission oriented residual forecasts. The unit root test would then  be carried out under the null 

hypothesis against the alternative hypothesis of Once a sampled district-level value for the test 
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statistic is computed it can be compared to the relevant critical value for the Dickey–Fuller 

Test. If the test statistic is less than the larger negative critical value in the risk model output, then the null 

hypothesis of  would be rejected and no unit root would be present in the residually forecasted estimates. 

The asymptotic distributions of the test statistics in a robust geopredictive time-series malarial-related district-level 

hyperendemic transmission oriented risk model could then be further elaborated in SAS/GIS. In the stepwise 

regression, quantitation of the empirical sampled data would include an intercept, where  would be replaced by 

the demeaned Brownian motion[i.e.,  ]. If the first step regression in the model 

construction process in SAS/GIS  includes a time trend, then  could be replaced by the detrended Brownian 

motion. The critical values of the asymptotic distributions are tabulated in Phillips and Ouliaris (1990) and 

MacKinnon (1991).  

Besides the ADF test, there is another popular unit root test that may be  valid under general serial correlation and 

heteroscedasticity for constructing a robust time series district-level geopredictive malarial-related risk models 

Phillips (1997) and Phillips and Perron (1988), for instance, constructed tests  using the AR(1) type regressions, , 

with corrected estimation of the long run variance of . A unit root test tests whether a time series variable is non-

stationary using an autoregressive model (Cressie 1993). These tests use the existence of a unit root as the null 

hypothesis. As such a malarialogist/experimenter may then consider the driftless random walk process 

where the disturbances in the sampled hyperendemic transmission oriented geoparamter estimator 

dataset might be serially correlated with possible heteroscedasticity. Phillips and Perron (1988) proposed the unit 

root test of the OLS regression model, . 

Also by denoting  the OLS residual by  in a time series geopredictive malaria-related hyperendemic transmission 

oriented district-level risk model  the asymptotic variance of can be estimated by using the truncation lag 

l[i.e. ] where , for , and . This is a consistent 

estimator as suggested by Newey and West (1987).  The variance of  in the time series  geopredictive district-level 

malarial model can then be estimated by by letting   be the variance estimate of the OLS 

estimator . Then the time series geopredictive district-level malaria-related test (i.e.,zero mean case) may be  

written as   The statistic is just the ordinary Dickey-Fuller statistic 

with a correction term that accounts for the serial correlation(Cressie 1993).The correction term would then shift to 

zero asymptotically if there is no serial correlation in the residual forecasts targeting the statistically important 

explanatory georeferenced field/clinical/remote-sampled district-level hyperendemic transmission oriented covariate 

coefficients. 

Thereafter, by  letting  be the statistic for  in the district level malarial risk model the  test may be  written 

using To incorporate a constant intercept, then,  the regression -

based risk model  may be employed  where the  null hypothesis in  the series is a driftless 

random walk with nonzero unconditional mean. Additionally, to incorporate a time trend in the regression–based 

malarial-related risk model,  may also be employed under the null the series as a random 

walk with drift for accurately quantitating the empirical sampled predictive district-level malaria-related risk model 

hyperendemic transmission oriented explanatory covariate coefficients measurements efficiently.  The limiting 

distributions of the test statistics for the zero mean case would then be and 
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= where B( ) is a standard Brownian motion. The limiting distributions of the test statistics 

for the intercept case in the district-level geopredictive risk model residual forecasts then would be 

and  

Finally, the limiting distributions of the test statistics for the trend case in a robust geopredictive time series  district-

level malaria-related risk model  can then  be derived as  where and 

for , or   When 

several variables are cointegrated, there exists a cointegrating vector such that is 

stationary and is a nonzero vector (Cressie 1993). The residual based cointegration test  would assume the 

following regression  based geopredictive district-level time series malarial-related model:  

where , , and = ( , , .As such, the malaraiolgist/experimenter  could estimate the 

consistent cointegrating vector by using OLS, if all the predictive time series district-level malaria-related risk 

model residual forecasts rendered from regressed field/clinical/remote empirical sampled malaria-related 

explanatory hyperendemic transmission oriented covariate coefficients measurements are difference stationary — 

that is, 1. The estimated cointegrating vector in the risk model then would be .  

The Phillips-Ouliaris test is computed using the OLS residuals from the preceding regression model, and it uses the 

PP unit root tests and developed in Phillips (1997), although in Phillips and Ouliaris (1990) the asymptotic 

distributions of some other leading unit root tests were  also derived. The null hypothesis is no cointegration 

(Griffith 2003). Thus, a malarialogist/experimenter would need only to refer to the tables by Phillips and Ouliaris 

(1990) to obtain the -value of the cointegration test for robust geopredictive time series district-level malaria-

related risk modeling. Before applying the cointegration test the unit root test for malarial-related risk modeling, the 

sampled  data attributes may however need to be tested. Unfortunately, cointegration tests can give conflicting 

results for different choices of the regression-based variables used to determine the optimal residually forecasted 

district-level hyperendemic transmission oriented covariates. There are other cointegration tests that are invariant to 

the order of the variables, including Johansen (1991) and  Stock and Watson (1988) that may also be employed for 

district-level malarial-related geopredictive  risk modeling empirical sampled explanatory hyperendemic 

transmission oriented covariate coefficients .  

As mentioned earlier, ADF for an empirical dataset of geopredictive time series risk modeling explanatory 

hyperendemic transmission oriented regressors may suffer severe size distortion and low power. There is a class of 

newer tests that improves both size and power, sometimes called efficient unit root tests, among which Elliott, 

Rothenberg, and Stock (1996) and Ng and Perron (2001) are prominent. Elliott, Rothenberg, and Stock (1996) 

considered the data generating process  and where was either or 

and were unobserved stationary zero-mean processes  with positive spectral density at zero frequency. 

By so doing,  the null hypothesis was , and the alternative was   . These models could be 

employed for accurately targeting statistically significant district-level  hyperendemic transmission oriented 

explanatory covariate coefficients measurements in predictive malaria-related risk model residually forecasted 

estimates. 

The key idea of Elliott, Rothenberg, and Stock (1996) was to study the asymptotic power and asymptotic power 

envelope of some new tests. Asymptotic power may be defined with a sequence of local alternatives (Griffith 2003). 

http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#phil_p_87
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#phil_p_90
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#phil_p_90
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#joha_s_91
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#stoc_j_88
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#elli_g_96
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#ng_s_01
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#elli_g_96
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#elli_g_96


International Journal of Geographic Information System 

Vol. 1, No. 1, November 2013, PP: 01 - 143 

Available Online at http://acascipub.com/Journals.php 

 

131 

 

For a fixed alternative hypothesis, the power of a test usually goes to one when sample size goes to infinity; 

however, this does not say anything about the finite sample performance(Cressie 1993). On the other hand, when 

regressing seasonal sampled district level malaria-related data the alternative moves closer to the null as the sample 

size increases and the power does not necessarily  have to converge to one. The local to unity alternatives in the 

model may be then quantitated employing  and the power against the local alternatives which would 

have a limit as goes to infinity, (i.e. asymptotic power). This value in a robust predictive malaria-related risk model 

would be strictly between 0 and 1. Asymptotic power indicates the adequacy of a test to distinguish small deviations 

from the null hypothesis (Rao 1973).  The asymptotic power for the risk model may then be defined as   

 and   

Thereafter, by letting  be the sum of squared residuals from a least squares regression of on  in a robust 

geopredictive district-level time series malaria-related risk model   constructed in SAS/GIS, the field/clinical/remote 

sampled malaria-related hyperendemic transmission oriented explanatory covariate sample point may be optimally 

tested against the local alternative  which would have the form where is an 

estimator for . Note that the test rejects the null when is small. The asymptotic power 

function for the point optimal test constructed with under local alternatives with  would then be denoted by 

 in the residually forecasted explanatory hyperendemic transmission oriented covariate coefficients. Then the 

power envelope would be  in the predictive malaria-related  district-level risk model constructed from an 

empirical dataset of field/clinical/remote sampled explanatory covariate coefficients  as the test formed with  would 

be  the most powerful against the alternative . In other words, the asymptotic function , is always below 

the power envelope except that at one point they are tangent. Elliott, Rothenberg, and Stock (1996) show 

that choosing some specific values for  can cause the asymptotic power function of the point optimal test to 

be very close to the power envelope. Coincidentally, this is also true for the DF-GLS test. Elliott, Rothenberg, and 

Stock (1996) who proposed the DF-GLS test, as given by the statistic for testing in the regression 

 where is obtained in a first step detrending  and is least squares 

regression coefficient of  on . DF-GLS is indeed a superior unit root test, according to Schwert (1989), and 

Elliott, Rothenberg, and Stock (1996). In terms of the size of the test, DF-GLS may be then almost as good as the 

ADF test and better than other tests such as the PP and test Stock (1994) for quantizing 

field/clinical/remote sampled explanatory hyperendemic transmission oriented covariate coefficients. In addition, 

the power of the DF-GLS is larger than the ADF test and -test.  

Additionally, regarding the lag length selection, Elliott, Rothenberg, and Stock (1996) favored the Schwartz BIC. 

The optimal selection of the lag length and the estimation of is further discussed in Ng and Perron (2001). The 

lag length is selected from the interval for some fixed by employing the modified AIC, 

 where and 

. For fixed lag length , an estimate of is given 

by   

Ng and Perron (2001) also applied GLS detrending to obtain the following M-tests: 
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which may be applicable for quantitating district-level predictive time series  field/clinical/remote hyperendemic 

transmission oriented covariate coefficients. The modified point optimal tests using the GLS detrended predictive 

malaria district-level hyperendemic transmission oriented explanatory covariate coefficient  data would then be 

and 

The DF-GLS test and the test have the same limiting 

distribution 

 
(Cressie 1993). The point optimal test and the modified point optimal test have the same limiting distribution 

and 

 where is a standard Brownian motion and 

is an Ornstein-Uhlenbeck process defined by with , 

, and .  

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was introduced in Kwiatkowski et al. (1992) to test the null 

hypothesis that an observable series is stationary around a deterministic trend. SAS/GIS can test for the null 

hypothesis using KPSS  that x is level or trend stationary (www.sas.edu) Kwiatkowski–Phillips–Schmidt–Shin 

(KPSS) tests  any be used for testing a null hypothesis that an observable predictive malarial-related time series is 

stationary around a deterministic trend. Such models were proposed in 1982 by Alok Bhargava in his Ph.D. thesis 

where several John von Neumann or Durbin–Watson type finite sample tests for unit roots were developed (see 

Bhargava, 1986). Later, Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt and Yongcheol Shin (1992) 

proposed a test of the null hypothesis that an observable series is trend stationary (i.e., stationary around a 

deterministic trend). The series was expressed as the sum of deterministic trend, random walk, and stationary error. 

The test was the Lagrange multiplier test of the hypothesis that the random walk has zero variance. KPSS type tests 

are intended to complement unit root tests, such as the Dickey–Fuller tests (Cressie 1993) . 

Lagrange multiplier test is a statistical test of a simple null hypothesis that a parameter of interest is equal to some 

particular value .(Cressie 1993) It is the most powerful test when the true value of is close to . The main 

advantage of the Lagrange multiplier test for quantitating district-level time series geopredictive time series 

field/clinical/remote hyperendemic transmission oriented covariate coefficients is that it does not require an estimate 

of the information under the alternative hypothesis or unconstrained maximum likelihood. This makes testing 

field/clinical/remote sampled malaria-related hyperendemic transmission oriented explanatory covariates in 

SAS/GIS, feasible when the unconstrained maximum likelihood estimate is a boundary point in geoparameter space. 

By testing both the unit root hypothesis and the stationary hypothesis, a malarialogist/experimenter may then 

distinguish  sampled time series district-level malarial-related data that appear to be stationary, series that appear to 

have a unit root, and series for which the data (or the tests) are not sufficiently informative to be certain whether the 

residuals  are stationary or integrated.Using kpss.test(x, null = c("Level", "Trend"), lshort = TRUE)where x is a 

numeric vector  and where null indicates the null hypothesis and must be one of "Level" (default) or "Trend" and  

lshort for indicating where  the long or short version  of the truncation lag geoparameter estimator is employed, a 

robust geopredictive  district-level malarial-related models. 

Under stronger assumptions of normality and i.i.d. of and , a one-sided LM test of the null, a random walk 

( ) can be constructed in SAS/GIS as follows: 

Notice that under the null hypothesis,  can be estimated 

by  OLS regression of  on an intercept and the time trend. Following the original work of Kwiatkowski, Phillips, 
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Schmidt, and Shin (1991) under the null ( ), statistic converges asymptotically to three different 

distributions depending on whether the model is trend-stationary, level-stationary ( ), or zero-mean stationary 

( , ).  

The trend-stationary model is denoted by subscript and the level-stationary model is denoted by subscript 

 (Cressie 1993). The case when there is no trend and zero intercept is denoted as 0. The last case, although rarely 

used in practice, is considered in Hobijn, Franses, and Ooms (2004).By so doing 

=  

with   and  where is the 

Brownian motion (i.e. Wiener process), and is convergence in a district-level geopredicted malaria-related 

model distribution. Note that is a standard Brownian bridge, is a Brownian bridge of a second-level.  

Importantly, when using the notation of the  statistic to compute the long-run variance  in a 

geopredictive district-level time series malaria-related risk model, the window width and the kernel type  

would be employed to qunatiate the field/clinical/remote sampled explanatory covariate coefficients using the 

KERNEL option in SAS/GIS. Further, employing the Newey-West/Bartlett (KERNEL=NW BART), default 

 Quadratic spectral (KERNEL=QS)  [e.g., 

 ]  can then specify the number of lags, , in 

three different ways in a robust geopredictive malaria-related district-level model: [e.g., Schwert (SCHW = c) 

(default for NW, c=4)  Manual (LAG = ) Automatic selection (AUTO) (default for QS) 

Hobijn, Franses, and Ooms (2004)]. 

Table 2: The kernel function and a formula for optimal window width where is the number of  geopredictive  

district –level  malaria-related observations in (AUTO) in SAS/GIS  

  NW Kernel    QS Kernel  

  
 

  
 

  

 

  

 

 

  
 

  
 

           where  if and 0, otherwise; .  

 Broock, Dechert, and Scheinkman (1987) propose a test (BDS test) of independence based on the correlation 

dimension. Broock et al. (1996) show that the first-order asymptotic distribution of the test statistic is independent of 

the estimation error provided that the parameters of the model under test can be estimated -consistently. Hence, 

the BDS test can be used as a geopredictive district-level seasonal malarial risk model error estimator selection tool 

and as a specification test.  Given the sample size , the embedding dimension , and the value of the radius , the 

http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#hobi_b_98
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#hobi_b_98
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#broo_w_87
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#broo_w_96
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BDS statistic for the risk model would be where 

The statistic has a standard normal 

distribution if the sample size is large enough. For small sample size, the distribution can be approximately obtained 

through simulation. Kanzler (1999) has a comprehensive discussion on the implementation and empirical 

performance of BDS test.  

The runs test and turning point test are two widely used tests for independence (Cromwell, Labys, and 

Terraza; 1994) which may be applicable for geopredictive district-level malarial time series risk modeling. The runs 

test needs several steps. First,the malarialogist/experimenter would  convert the original time series 

field/clinical/remote sampled explanatory hyperendemic transmission oriented covariate coefficients  into the 

sequence of signs, , that is, map into where is the sample mean 

of and is " ", if is nonnegative and " " if is negative. Second, the malarialogist/experimenter would 

count the number of runs, , in the sequence. A run of a sequence is a maximal non-empty segment of the sequence 

that consists of adjacent equal elements (Cressie 1993). For instance, the following sequence contains runs: 

in SAS (www.sas.edu) Third, the number of pluses and 

minuses in the sequence would have to be noted and then denoted as and , respectively in the geopredictive 

malaria-related risk model. Finally, the malarialoglist/experimenter would have to compute the statistic of runs test 

employing  where  The statistic of the turning point test in 

the geopredictive seasonal district-level risk model would then be defined as follows: 

 , for instance, where the indicator function of the turning point is 1 if 

or (that is, both the previous and next values are greater or less than the current sampled value); 

otherwise, 0.  The statistics of both the runs test and the turning point test would then possess a standard normal 

distribution under the null hypothesis of independence.  

Increasing the scope of data collection may, however, may require adaptations in statistical analysis in order to 

accommodate larger and more complex endmember-oriented ecological data in ArcGIS. For example, evaluating 

spectrally extracted canopied endmember data employing multivariate ordination techniques applying different 

spatial-scaled observational covariate coefficients may help describe malaria- related ecohydrological features. 

River meandering (i.e., lateral migration of the channel) and avulsion (i.e. channel cut-off) , for instance, may then 

create a mosaic of landscapes and vegetative diversity that may be key to immature anopheline productivity  in 

specific district geolocations. The ability of the river to meander, avulse, and generate new floodplain surfaces may 

be crucial to supporting diverse urban and non-urban habitats and healthy populations of immature Anopheles and 

therefore may be the basis of many metrics used as indicators of riverine malaria-related ecosystem health.  

 

Additionally, employing nonparametric multivariate smoothing of presence–absence riverine-based endmember data 

may be highly effective for detecting patterns in heterogeneous spectrally decomposed riverine larval habitat 

assemblage data. Recently, Jacob et al. (2013) a0.6m
2
 QuickBird spectral signature characteristic of Similium 

damnosum s.l. a black fly vector of onchocerciasis (‗river blindness‘) was generated using multiple unmixing 

algorithms, vegetation indices and object based classifiers. The model was developed to forecast S. damnosum s.l. 

larval habitats based on the 0.6m
2
 signature (i.e.,34% red, 11% blue  and 55% green). Since the model encompassed 

the habitat within canopied objects (e.g. Precambrian rock, turbid water spectral components),it  was designated  as  

http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#kanz_l_99
http://support.sas.com/documentation/cdl/en/etsug/63348/HTML/default/etsug_autoreg_sect042.htm#crom_j_94
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a black rock-rapid) model. The model successfully identified positive aquatic sites in hyperendemic areas employing 

a stochastically endmember interpolated map in Togo (i.e., a sensitivity and specificity approaching 100%) and in 

Uganda (i.e.,sensitivity of 80% and a specificity of 92% with a statistically significance of p<0.0001; Fisher's Exact 

test).  

 

Although, traditionally spectrally continuous analysis has presented challenges in localizing and extracting 

endmember patterns from noisy ecological –related endmember data employing, a robust, parsimonious object-

based canopy-oriented riverine larval habitat analyses over a range of spatial scales in ENVI may provide the 

opportunity to pre-evaluate unknown immature Anopheles distributional patterns in Uganda. This would then 

perhaps render a more robust signature using the object-based classification.  While district level LULC have certain 

advantages over other terrestrial environments in terms of ecological analysis (e.g., relatively defined spatial 

boundaries), patterns in  flowing waters  within the districts may be more difficult to visualize and measure and may 

be constantly in motion relative to the aquatic and terrestrial landscapes in which they are embedded. Moreover, in 

scaling up to obtain  a finer  remote resolution  perspective (e.g.,  World view 3 satellite data systems) , the mosaic 

two-dimensional structure of district-level riverine environments and other hydrological networks at the scale of 

meters may quickly  become condensed into a one-dimensional line or network of lines at the scale of kilometers. 

DigitalGlobe's next satellite WorldView-3 is in a phased development process for an advanced fourth-generation 

satellite scheduled to launch in mid-2014 and will offer 0.31 meter resolution panchromatic and eight-band multi-

spectral imagery (www.digitalglobe.com)  Thus, examining spectral variability of  district-level canopy-oriented 

immature Anopheles assemblages and observing the relative influences of temperature and riverine channel a 

morphology on these  assemblage structure may determine  the signature dependency  on decomposed  sub-pixel 

emissivities  and the spatial scale of  the end member analysis. 
 

Conclusion  

In conclusion in this research we constructed time series-dependent linear and non-linear residual diagnostic error 

estimation models in SAS/GIS
®
 using multiple district-level georeferenced malaria-related observational predictors 

sampled from 2006 to 2010 in Uganda. Initially, a Poisson and a negative binomial (i.e., a Poisson random variable 

with a gamma distrusted mean) was constructed in PROC REG which revealed that the residuals derived from the 

models were significant, but furnished virtually no predictive power. The seasonal-sampled georeferenced 

explanatory covariate coefficients variables and the district locational spatial structure was then with Thiessen 

polygons in ArcGIS. However this process failed to reveal unbiased estimators. A spatial eigenvector filtering 

algorithm in SAS/GIS was then generated. Thereafter, an Autoregressive Integrated Moving Average (ARIMA) 

model was constructed in ArcGIS
®
 which rendered a conspicuous but not very prominent first-order residual 

spatiotemporal autoregressive structure in the sampled individual district-level time-series-dependent data. 

Additionally, the estimated model residuals, contained considerable overdispersion (i.e., excess Poisson 

variability): quasi-likelihood scale = 76.5648. Further, a malarial district-level data in ArcGIS
®
 by overlaying the 

sub-meter resolution tessellations rendered from the predictive random effects risk  model onto  Map Atlas Data 

which efficiently mapped  endemicity, entomological inoculation rates and the interpolated distribution of two 

known malaria mosquitoes species at the study site (Anopheline arabiensis and Anopheline gambiae s.l). We then 

constructed a DEM in ArcGIS
®
 to create more robust indices based on the primary random effect model estimates. 

By doing so, the Poisson mean response specification was tabulated as: = exp[a + re+ LN(population)], Y 

~Poisson  +DEM (zonal statistic). The mixed-model estimation results included: a = -3.1876 re ~ n(0, s
2
) mean 

re = -0.0010 s
2
 = 0.2513 where P(S-W) = 0.0005 and the Pseudo-R

2
 = 0.3103. A random effect intercept can 

robustly quantitate spatiotemporal residual predictor error covariate coefficients in a ArcGIS
®
 and SAS/GIS

® 
based 

malarial-related regression-based model for predicting and prioritizing district-level prevalence rates. 
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