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Abstract 

For a simple finite connected molecular graph G=(V,E), we have many topological indices in graph theory. In 

molecular graph G, vertices are corresponding to the atoms and edges corresponding to the bonds. The number of 

atoms (vertices), and bonds (edges), are equal to n=|V| and m=|E(G)|, respectively. 

A simple topological index of G is the distance between vertices u and v of G (denoted by d(u,v)), and defined as the 

number of edges in a shortest path connecting them. One of oldest topological index of graph is Wiener index 

( ) ( )

1
( ) ( , ).

2 u V G v V G
W G d u v

 
    Recently, we know Padmakar-Ivan index and Szeged index that are related to 

Wiener index and defined as  
( )

( ) ( | ) ( | )e u ve E G
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new version of Padmakar-Ivan index (Vertex Version of PI index, is 
( )

( ) ( ( | ) ( | )).v u ve E G
PI G n e G n e G


   In this 

paper, we focus on the structure of the circumcoronene series of benzenoid Hk  and Computing a closed formula for 

PIe(Hk) and PIv(Hk) by use of Cut Method.   Copyright © acascipub.com, all rights reserved.  
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Introduction 

Let G=(V,E), be a simple connected molecular graph of finite order n=|V|, such that it has vertex set V=V(G), and 

edge set E=E(G). In molecular graph G, vertices are corresponding to the atoms and edges corresponding to the 

bonds. An edge e=uv of graph G is joined between two vertices u and v. The number of vertices and edges of G are 

denoted by n and m=|E(G)|, respectively. 

In graph theory, an important terminology of graph is degree dv of a vertex vV(G) that it is the number of adjacent 

vertices with v or the size of first neighbourhood of vertex v. A general reference for the notation in graph theory is 

[1]. In mathematics chemistry, we have many topological indices for any molecular graph, that they are invariant on 

the graph automorphism. A simple topological index of G is the distance between vertices u and v of G. The 

distance between vertices u and v of G, denoted by d(u,v), is the number of edges in a shortest path connecting them. 

Obviously, for edge e=uv, d(u,v)=1.  

Usage of topological indices in chemistry began in 1947 when chemist Harold Wiener developed the most widely 

known topological descriptor. The Wiener index W(G), is the oldest topological indices (based structure descriptors) 

[2-5], which have very chemical applications and mathematical properties. This defined as follow: 

( ) ( )

1
( ) ( , )

2 u V G v V G
W G d u v

 
    

The other topological indices of graph (based structure descriptor), that was conceived somewhat later [5, 6], is the 

hyper-Wiener index 

 2
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     

Recently, Khadikar and co-authors [7-10] defined a new topological index and named it the Padmakar-Ivan index. 

Here Padmakar comes from Padmakar Khadikar, and Ivan from Ivan Gutman. They abbreviated this new 

topological index as PI(G), (Of course, more precisely, we abbreviate it as PIe(G), because there exists also a vertex 

version of PI index). On the other hands, the Szeged index is another topological index which was introduced by 

Ivan Gutman (in 1994), and denoted by Sz(G), (or, more precisely, Szv(G)) [11-13]. 

Suppose e=uvE(G) is an edge connecting the vertices u and v, thus edge version of Padmakar-Ivan index and 

Szeged index of graph G are defined as 

 
( )

( | ) ( | )e u v

e E G

PI m e G m e G


   
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   

respectively. Also, mu(e|G) is the number of edges of G lying closer to u than to v and mv(e|G)  is the number of 

edges of G lying closer to v than to u. nu(e|G)  is the number of vertices of G lying closer to u and nv(e|G)  is the 



International Journal of Mathematical Modeling and Applied Computing                                                                           

Vol. 1, No. 6, September 2013, PP:  41- 50                                                                                                                                   

Available online at http://acascipub.com/Journals.php 

43 

 

number of vertices of G lying closer to v. Vertices and edges equidistance from u and v are not taken into accounts. 

In other words, 

mu(e|G)={x|xE(G),d(u,x)<d(x,v)},  

mv(e|G)={x|xE(G),d(v,x)<d(x,u)},  

nu(e|G)={y|yV(G),d(u,y)<d(y,v)},  

nv(e|G)={y|yV(G),d(v,y)<d(y,u)},  

In 2007, A.R. Ashrafi and co-author introduced the vertex PI index of G, PIv(G), as the sum of [nu(e|G)+nv(e|G)] 

over all edges of G. see [14]. We know an alternative formula for calculating the vertex PI index and edge PI index 

from [15] are equal to 

( )

| | . | | ( ),v

e E G

PI V E n e


    

  2

( ) ( )

( | ) ( | )) | | ( ),e u v

e E G e E G

PI m e G m e G E m e
 

      

respectively. Where n(e) and m(e), denotes the number of vertices and edges equidistant from u,v respectively. Some 

applications of Padmakar-Ivan Index in Nanotechnology can be see in the review paper [16]. 

In this paper, we focus on the structure of the circumcoronene series of benzenoid Hk and obtain a closed formula for 

PIe(Hk) and PIv(Hk)  by use of Cut Method. By these terminologies, we have following theorems. The following 

theorems are remake report and main result in this paper. 

Theorem 1. ([17-19]), For the graphs from the circumcoronene series of benzenoid Hk (k≥1) 

W(Hk)= 1
5

(164k
5
-30k

3
+k)  

Theorem 2. ([6, 17]), The Hyper-Wiener index of the circumcoronene series of benzenoid Hk (k≥1) is equal to  

WW(Hk)= 6 5 4 2548 82 55 17 1
3 3 .

15 5 6 15 10
k k k k k k      

Theorem 3. ([17]), Let G be the the circumcoronene series of benzenoid Hk (k≥1). Then 

SZv(Hk)= 3
2

k
2
(36k

4
-k

2
+1)  

Theorem 4. Consider the graph G=Hk (k≥1) is circumcoronene series of benzenoid. Then edge version of PI index 

of G is equal to  

PIe(Hk)=81k
4
-68k

3
+12k

2
-k 

Theorem 5. The vertex-PI index of circumcoronene series Hk (k≥1)  is PIv(Hk)=54k
4
-18k

2
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In next section, we introduce the modify form of cut method and rewrite the definition of it for circumcoronene 

series of benzenoid Hk (k≥1). Finally, we proof the theorems 4 and 5 by use of Orthogonal Cuts of Hk. 

Main Results and Discussions 

The benzene molecule is a usual chemical structure in chemistry, physics and nano sciences. This molecule is very 

useful to synthesize aromatic compounds. The circumcoronene series of benzenoid Hk is one family that generate 

from benzene molecule. A famous member of this family is coronene H2 (or Ca(C6) that it is first term of Capra-

designed planar benzenoid series Can(C6), see [20-30]). 

The first terms of this series are H1=Benzene, H2=Coronene,  H3=Circumcoronene  H4=Circumcircumcoronene  see 

Figure 1, where they are shown. The general representation of circumcoronene series of benzenoid is shown in 

Figure 2. For more study of these molecular graphs see the paper series [6, 17, 18, 20, 21, 31-62]. 

 

Figure 1: The first three graphs H1, H2, H3  and H4  from the circumcoronene series, such that H1, H2 are graphs C6  

and the Capra of planer benzenoid Ca(C6),  respectively.   

On the other hands, since the circumcoronene series of benzenoid has a very remarkable structure, we lionize it and 

present a closed formula for the vertex-PI index and edge-PI index of general case of circumcoronene series of Hk 

(k≥1)   For computing the vertex-PI index and edge-PI index and achieve our aims, we using the Cut Method and 

find Orthogonal Cuts of Hk.  For a molecular graph G, Sandi Klavžar described and studied the general form of cut 

method in the paper [17] and we introduce the following definition from [17]. 

Definition 1. Let G=(V,E), be molecular graph. Then, the cut method, dividing edge set and vertex set of G into 

several partitions as follow: 

1- Partition the edge set of G into classes 
1,..., hC C  call them cuts, such that each of the sub-graphs G-

iC   i=1,...,h, 

consists of two (or more, connected components. 

2- Use properties (of the components), of the graphs G-
iC  to derive a required property of G. 

The cut method can hardly be studied in the above generality and isn't useful for our aims. The cut method turned 

out to be especially useful when if comes to metric properties of graphs.  

So, we are using an especial form of the cut method. These interesting cuts, which called Orthogonal Cuts. An 

orthogonal cut C(e), with respect to edge e is the set of all edges eE(G) which are strongly co-distant to e [62]. 
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C(e):={e’E(G)|e’ is co-distant with e} 

Reader can see these cut of circumcoronene series of benzenoid H4 in Figure 3. Also, for further research and study 

of the cut method and orthogonal cuts in some classes of chemical graphs, see [17, 62]. Some applications of the cut 

method include the Wiener index, hyper-Wiener index, weighted Wiener index, Wiener-type, edge Szeged index 

and classes of chemical graphs such as trees, benzenoid graphs and phenylenes. 

Now, we start the proof of theorems, which exhibited in above section. 

Proof of Theorem 4. Let G=Hk be the circumcoronene series of benzenoid. We know that the general case of this 

family have 6k
2
=nk vertices and 9k

2
-3k=mk edges. By according to Figure 3, we see that the number of cutting edges 

by orthogonal cut ,iC i=1,...,k (a particular case of Definition 1 is h=k, is equal to k+i and | |iC =k+i. Obviously, 

there exist five other cuts similar to cut 
iC  (i=1,…,k-1) and are two cuts similar to .kC  In other words, 

1 1

1

3 | | 6 | | ... 6 | | 6 [ ] 6 .
k

k k k

i

m k i k



      C C C  

Now, by refer to definition of edge-PI index, we need to compute mu(e|Hk) and mv(e|Hk)  for every edge eE(G). So, 

we denote all edge e=uv belong to cut 
iC  by e(i) and rewrite mv(e(i)|Hk)=mvi as the number of edges from small 

half of sub-graph G-
iC   and mu(e(i)|Hk)=mui  as the number of edges from large half of sub-graph G-

iC , see Fig. 3. 

Thus    
( )

( | ) ( | )e u v

e E G

PI m e G m e G


   
( ) , 1i

k

i i

e i i

mu mv
 

 
C

 

On the other hands, an important property of orthogonal cut is determining the co-distance edges of G ( e=uv, 

f=xy
iC  d(e,x)=d(e,y) and d(f,u)=d(f,v)), see Figure 3. Thus, mui+mvi 

( ( ))

| ( ) | | | .i

m e i

E G  C  We denote the distance 

between mvi and mvi-1 by xmi (or xmi=mvi-mvi-1=mui-1-mui). It is clear that 
1 1| | 2 | |i i ixm   C C  such that 

xm1=2k=mv1, see Figure 3. So,  

mvi=xmi+mvi-1 

=xmi +xmi-1+mvi-2 

1

2

i

j

j

xm mv




 
 

2

2 3 ( 1)
i

j

k k j


     

1

1

2 3 ( 1) 3
i

j

k k i j




      
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3 ( 1)
3

2

i i
ki k


    

23 3
3

2 2
i i k k

 
    

 

 

It is obvious that 29 5
.

2 2
kmv k k    

Now, in continue of equation 2.1, 

1

[6 | | ( )] 3 | | ( )
k

e i i i k k k

i

PI mu mv mu mv


    C C   

2

1

6 [( )( | |)] 6 (9 5 )
k

i

i

k i m k k k


     C  

3 2 2 2 3 2

1

6 [9 4 (9 5 ) ] 54 30 )
k

i

k k i k k i k k


        

 3 2 26 ( 1)
54 24 9 5

2

k k
k k k k


      3 26 ( 1)(2 1)

54 30
6

k k k
k k

 
    

4 3 2 3 254 24 3 ( 1)(9 5) 2 3k k k k k k k k         

=81k
4
-68k

3
+12k

2
-k 

Hence, this completes the proof of Theorem 4.■ 

 

Figure 2: The circumcoronene series of benzenoid Hk (k≥1). 

Example 1. The edge-PI index of circumcoronene H3 is PIe(H3)=4938. Since, there exist 3 orthogonal cuts and 

implies that mu1=6, mv1=62,  mu2=18, mv2=49,  mu3=33 and  mv3=33, see Figure 3. The number of repetition of 
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first and second orthogonal cuts are equal to six and the number of repetition of third orthogonal cut is equal to 

three. Thus, 

 
3

3 3 3

( )

( ) ( | ) ( | )e u v

e E H

PI H m e H m e H


  6 4(6 62) 6 5(18 49) 3 6(33 33) 4938           

 

Figure 3: The presentation of cut method (orthogonal cut) on the circumcoronene H3. 

Proof of Theorem 5. Consider circumcoronene series of benzenoid Hk for every k≥1.  We denote the number of 

vertices from small half of sub-graph G-
iC  for all edge e(i), belong of cut 

iC  ( 1,…,k) by nvi=nv(e(i)|Hk) and the 

number of edges from large half of sub-graph G-
iC  by nvi.  Now, let the distance between nvi and nvi-1 be equal to 

nvi (or xni=nvi-nvi-1=nui-1-nui   and xn1=nv1=2k+1 By refer to Figure 3, it is obvious that xni=5k+2i-1( 1,…,k). So, 

by solve this recursive sequence, nvi  is equal to 

nvi =xni +nvi-1 

1 2i i ixn xn nv   


 

1

2

i

j

j

xn nv


   

1

(2 2 1)
i

j

k j


    

1

( 1)

2

(2 1) 2
i

j

i i

i k j




      

=i
2
+ki 

Obviously from equation 2.4, nvk=nuk=k
2
+2k

2
=

2
n  and nui=nk-nvi=6k

2
+2ki-i

2
 (since n(e(i))=0). Now, by similar 

argument with above proof and using definition of vertex-PI index, we have 

 
( )

( | ) ( | )v u v

e E G

PI n e G n e G

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 
( ) , 1i

k

i i

e i i

nu nv
 

 
C

 

1

1

[6 | | ( )] 3 | | ( )
k

i i i k k k

i

nu nv nu nv




    C C  

1

1

6 [ ] 3(2 )
k

k k

i

n k i k n




    

2 3( 1)
36 [ ( 1) ] 36

2

k k
k k k k


     

Thus, vertex-PI index of circumcoronene series of benzenoid Hk (k≥1) is equal to PIv(Hk)=54k
4
-18k

2
 and this 

completes the proof.■ 

Example 2. The vertex-PI index of circumcoronene H3 is PIv(H3)=3888. Since, there exist 3 orthogonal cuts and 

implies that nu1=7, nv1=47,  nu2=16, nv2=38,  nu3=27, and  nv3=33,  see Figure 3. The number of repetition of first, 

second and third orthogonal cuts are equal to 6, 6 and 3, respectively. Hence, 

 
3

3 3 3

( )

( ) ( | ) ( | )v u v

e E H

PI H n e H n e H


  6 4(7 47) 6 5(16 38) 3 6(27 27) 3888.           
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